1
|
Li MC, Lai YL, Kuo PH, Reddy JS, Chen CM, Manimala J, Wang PC, Wu MS, Chang CY, Yang CM, Lin CY, Huang YC, Chiu CH, Chang L, Lin WH, Yeh TK, Yen WC, Hsieh HP. Discovery of Dual MER/AXL Kinase Inhibitors as Bifunctional Small Molecules for Inhibiting Tumor Growth and Enhancing Tumor Immune Microenvironment. J Med Chem 2024; 67:10906-10927. [PMID: 38913493 PMCID: PMC11247487 DOI: 10.1021/acs.jmedchem.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024]
Abstract
A series of bifunctional compounds have been discovered for their dual functionality as MER/AXL inhibitors and immune modulators. The furanopyrimidine scaffold, renowned for its suitability in kinase inhibitor discovery, offers at least three distinct pharmacophore access points. Insights from molecular modeling studies guided hit-to-lead optimization, which revealed that the 1,3-diketone side chain hybridized with furanopyrimidine scaffold that respectively combined amino-type substituent and 1H-pyrazol-4-yl substituent on the top and bottom of the aryl regions to produce 22 and 33, exhibiting potent antitumor activities in various syngeneic and xenograft models. More importantly, 33 demonstrated remarkable immune-modulating activity by upregulating the expression of total T-cells, cytotoxic CD8+ T-cells, and helper CD4+ T-cells in the spleen. These findings underscored the bifunctional capabilities of 33 (BPR5K230) with excellent oral bioavailability (F = 54.6%), inhibiting both MER and AXL while modulating the tumor microenvironment and highlighting its diverse applicability for further studies to advance its therapeutic potential.
Collapse
Affiliation(s)
- Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center (BioTReC), Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - You-Liang Lai
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Po-Hsien Kuo
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Julakanti Satyanarayana Reddy
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chih-Ming Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Julakanti Manimala
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Pei-Chen Wang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ming-Shiem Wu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Yu Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chen-Ming Yang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chin-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yu-Chen Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Hsien Chiu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ling Chang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Wen-Hsing Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Wan-Ching Yen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center (BioTReC), Academia Sinica, Taipei City 115202, Taiwan, ROC
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
| |
Collapse
|
2
|
Wang T, Gao Y, Wu F, Luo L, Ma J, Hu Y. Coumarin-furo[2,3- d]pyrimidone hybrid molecules targeting human liver cancer cells: synthesis, anticancer effect, EGFR inhibition and molecular docking studies. RSC Med Chem 2024; 15:1565-1577. [PMID: 38784474 PMCID: PMC11110736 DOI: 10.1039/d3md00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The design, synthesis and investigation of antitumor activities of some coumarin-furo[2,3-d]pyrimidone hybrid molecules are reported. In vitro, HepG2 cells were used to investigate the cytotoxicity of 6a-n and 10a-n. The results demonstrated that coupling a furopyrimidone scaffold with coumarin through a hydrazide linker can effectively improve their synergistic anticancer activity. The coumarin-furo[2,3-d]pyrimidone combination 10a exhibited significant inhibitory activity against HepG2 cells with IC50 = 7.72 ± 1.56 μM, which is better than those of gefitinib and sorafenib. It is worth mentioning that the coumarin-furo[2,3-d]pyrimidone combination 10a showed excellent inhibition of the EGFR enzymatic activity with IC50 = 1.53 μM and 90% inhibition at 10 μM concentration. In silico investigation predicts the possibility of direct binding between the new coumarin-furo[2,3-d]pyrimidone hybrid molecules and the EGFR. The results suggest that coumarin-furo[2,3-d]pyrimidone hybrid molecules are potential antitumor agents targeting human liver cancer cells.
Collapse
Affiliation(s)
- Tianshuai Wang
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yumeng Gao
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Fengxu Wu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Lun Luo
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
3
|
Dhiwar PS, Purawarga Matada GS, Pal R, Singh E, Ghara A, Maji L, Sengupta S, Andhale G. An assessment of EGFR and HER2 inhibitors with structure activity relationship of fused pyrimidine derivatives for breast cancer: a brief review. J Biomol Struct Dyn 2024; 42:1564-1581. [PMID: 37158086 DOI: 10.1080/07391102.2023.2204351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its subtype human epidermal growth factor receptor 2 (HER2) gets activated when its endogenous ligand(s) bind to its ATP binding site of target receptors. In breast cancer (BC), EGFR and HER2 are two proteins are overexpressed which leads to overexpression of cells proliferation and decreases cell death/apoptosis. Pyrimidine is one of the most widely studied heterocyclic scaffolds for EGFR as well as HER2 inhibition. We gather some remarkable results for fused-pyrimidine derivatives on various cancerous cell lines (in-vitro) and animal (in-vivo) evaluation to highlight their potency. The heterocyclic (five, six-membered, etc.) moieties which are coupled with pyrimidine moiety are potent against EGFR and HER2 inhibitions. Hence structure-activity relationship (SAR) plays important role in study of heterocyclic moiety along pyrimidine and effects of substituents, groups for increase or decrease in the cancerous activity and toxicity. By thoughtful of fused pyrimidines SAR study, it facilitates in receiving excellent overview of the compounds by concerning of efficacy and potential summary for future EGFR inhibitors. Furthermore, we studied the in-silico interactions of synthesized compounds to evaluate binding affinity towards the key amino acids..Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasad Sanjay Dhiwar
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | | | - Rohit Pal
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Lalmohan Maji
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Sindhuja Sengupta
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ganesh Andhale
- Department of Pharmaceutical Chemistry, Alard College of Pharmacy, Pune, India
| |
Collapse
|
4
|
Li Y, Yan B, He S. Advances and challenges in the treatment of lung cancer. Biomed Pharmacother 2023; 169:115891. [PMID: 37979378 DOI: 10.1016/j.biopha.2023.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
Lung cancer accounts for a relatively high proportion of malignant tumors. As the most prevalent type of lung cancer, non-small cell lung cancer (NSCLC) is characterized by high morbidity and mortality. Presently, the arsenal of treatment strategies encompasses surgical resection, chemotherapy, targeted therapy and radiotherapy. However, despite these options, the prognosis remains distressingly poor with a low 5-year survival rate. Therefore, it is urgent to pursue a paradigm shift in treatment methodologies. In recent years, the advent of sophisticated biotechnologies and interdisciplinary integration has provided innovative approaches for the treatment of lung cancer. This article reviews the cutting-edge developments in the nano drug delivery system, molecular targeted treatment system, photothermal treatment strategy, and immunotherapy for lung cancer. Overall, by systematically summarizing and critically analyzing the latest progress and current challenges in these treatment strategies of lung cancer, we aim to provide a theoretical basis for the development of novel drugs for lung cancer treatment, and thus improve the therapeutic outcomes for lung cancer patients.
Collapse
Affiliation(s)
- Yuting Li
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Bingshuo Yan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People's Republic of China.
| |
Collapse
|
5
|
Abstract
An analysis of 156 published clinical candidates from the Journal of Medicinal Chemistry between 2018 and 2021 was conducted to identify lead generation strategies most frequently employed leading to drug candidates. As in a previous publication, the most frequent lead generation strategies resulting in clinical candidates were from known compounds (59%) followed by random screening approaches (21%). The remainder of the approaches included directed screening, fragment screening, DNA-encoded library screening (DEL), and virtual screening. An analysis of similarity was also conducted based on Tanimoto-MCS and revealed most clinical candidates were distant from their original hits; however, most shared a key pharmacophore that translated from hit-to-clinical candidate. An examination of frequency of oxygen, nitrogen, fluorine, chlorine, and sulfur incorporation in clinical candidates was also conducted. The three most similar and least similar hit-to-clinical pairs from random screening were examined to provide perspective on changes that occur that lead to successful clinical candidates.
Collapse
Affiliation(s)
- Dean G Brown
- Jnana Therapeutics, One Design Center Pl Suite 19-400, Boston, Massachusetts 02210, United States
| |
Collapse
|
6
|
Song B, Nie L, Bozorov K, Niu C, Kuryazov R, Akber Aisa H, Zhao J. Furo[2,3-d]pyrimidines as Mackinazolinone/Isaindigotone Analogs: Synthesis, Modification, Antitumor Activity, and Molecular Docking Study. Chem Biodivers 2023; 20:e202201059. [PMID: 36680784 DOI: 10.1002/cbdv.202201059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/01/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
The chemical transformation of the tricyclic furo[2,3-d]pyrimidines was performed under isosteric and scaffold-hopping strategies focusing on the synthesis of its arylidene and imine-containing derivatives. Naturally-occurring alkaloids mackinazolinone and isaindigotone were as templates of target heterocycles. Synthesized compounds evaluated for their antitumor activity on human cancer cervical HeLa, breast MCF-7, and colon HT-29 cell lines. Four compounds: 8c, 8e, 10b, and 10c demonstrated potency against HeLa and HT-29 cell lines, and IC50 values were between 7.37-13.72 μM, respectively. The molecular docking results showed that compounds 8c and 10b had good binding and high matching with the target EGFR protein.
Collapse
Affiliation(s)
- Buer Song
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Lifei Nie
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
| | - Khurshed Bozorov
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
| | - Chao Niu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Rustamkhon Kuryazov
- Faculty of Chemistry, Samarkand State University, University Blvd. 15, Samarkand, 140104, Uzbekistan
- Urgench State University, Kh. Olimjon st. 14, Urgench, 220100, Uzbekistan
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Rd 40-1, Urumqi, 830011, P. R. China
- University of Chinese Academy of Sciences, 19 A Yuquan Rd, Beijing, 100049, P. R. China
| |
Collapse
|
7
|
Li MC, Coumar MS, Lin SY, Lin YS, Huang GL, Chen CH, Lien TW, Wu YW, Chen YT, Chen CP, Huang YC, Yeh KC, Yang CM, Kalita B, Pan SL, Hsu TA, Yeh TK, Chen CT, Hsieh HP. Development of Furanopyrimidine-Based Orally Active Third-Generation EGFR Inhibitors for the Treatment of Non-Small Cell Lung Cancer. J Med Chem 2023; 66:2566-2588. [PMID: 36749735 PMCID: PMC9969398 DOI: 10.1021/acs.jmedchem.2c01434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The development of orally bioavailable, furanopyrimidine-based double-mutant (L858R/T790M) EGFR inhibitors is described. First, selectivity for mutant EGFR was accomplished by replacing the (S)-2-phenylglycinol moiety of 12 with either an ethanol or an alkyl substituent. Then, the cellular potency and physicochemical properties were optimized through insights from molecular modeling studies by implanting various solubilizing groups in phenyl rings A and B. Optimized lead 52 shows 8-fold selective inhibition of H1975 (EGFRL858R/T790M overexpressing) cancer cells over A431 (EGFRWT overexpressing) cancer cells; western blot analysis further confirmed EGFR mutant-selective target modulation inside the cancer cells by 52. Notably, 52 displayed in vivo antitumor effects in two different mouse xenograft models (BaF3 transfected with mutant EGFR and H1975 tumors) with TGI = 74.9 and 97.5% after oral administration (F = 27%), respectively. With an extraordinary kinome selectivity (S(10) score of 0.017), 52 undergoes detailed preclinical development.
Collapse
Affiliation(s)
- Mu-Chun Li
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shu-Yu Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yih-Shyan Lin
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Guan-Lin Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chun-Hwa Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Tzu-Wen Lien
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yi-Wen Wu
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Yen-Ting Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Ching-Ping Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Yu-Chen Huang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Kai-Chia Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chen-Ming Yang
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Bikashita Kalita
- Department
of Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet 605014, Pondicherry, India
| | - Shiow-Lin Pan
- Graduate
Institute of Cancer Biology and Drug Discovery, College of Medical
Science and Technology, Taipei Medical University, Taipei City 110301, Taiwan, ROC
- Ph.D.
Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei City 110301, Taiwan, ROC
| | - Tsu-An Hsu
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Teng-Kuang Yeh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Chiung-Tong Chen
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute
of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli County 350401, Taiwan, ROC
- Biomedical
Translation Research Center, Academia Sinica, Taipei City 115202, Taiwan, ROC
- Department
of Chemistry, National Tsing Hua University, Hsinchu City 300044, Taiwan, ROC
- , . Phone: +886-37-206-166
| |
Collapse
|
8
|
Green and efficient one-pot three-component synthesis of novel drug-like furo[2,3–d]pyrimidines as potential active site inhibitors and putative allosteric hotspots modulators of both SARS-CoV-2 MPro and PLPro. Bioorg Chem 2023; 135:106390. [PMID: 37037129 PMCID: PMC9883075 DOI: 10.1016/j.bioorg.2023.106390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/29/2023]
Abstract
In this paper, an environmentally benign, convenient, and efficient one-pot three-component reaction has been developed for the regioselective synthesis of novel 5-aroyl(or heteroaroyl)-6-(alkylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-diones (4a‒n) through the sequential condensation of aryl(or heteroaryl)glyoxal monohydrates (1a‒g), 1,3-dimethylbarbituric acid (2), and alkyl(viz. cyclohexyl or tert-butyl)isocyanides (3a or 3b) catalyzed by ultra-low loading ZrOCl2•8H2O (just 2 mol%) in water at 50 ˚C. After synthesis and characterization of the mentioned furo[2,3-d]pyrimidines (4a‒n), their multi-targeting inhibitory properties were investigated against the active site and putative allosteric hotspots of both SARS-CoV-2 main protease (MPro) and papain-like protease (PLPro) based on molecular docking studies and compare the attained results with various medicinal compounds which approximately in three past years were used, introduced, and or repurposed to fight against COVID-19. Furthermore, drug-likeness properties of the mentioned small heterocyclic frameworks (4a‒n) have been explored using in silico ADMET analyses. Interestingly, the molecular docking studies and ADMET-related data revealed that the novel series of furo[2,3-d]pyrimidines (4a‒n), especially 5-(3,4-methylendioxybenzoyl)-6-(cyclohexylamino)-1,3-dimethylfuro[2,3-d]pyrimidine-2,4(1H,3H)-dione (4g) as hit one is potential COVID-19 drug candidate, can subject to further in vitro and in vivo studies. It is worthwhile to note that the protein-ligand-type molecular docking studies on the human body temperature-dependent MPro protein that surprisingly contains zincII (ZnII) ion between His41/Cys145 catalytic dyad in the active site, which undoubtedly can make new plans for designing novel SARS-CoV-2 MPro inhibitors, is performed for the first time in this paper, to the best of our knowledge.
Collapse
|
9
|
Khan A, Naaz F, Basit R, Das D, Bisht P, Shaikh M, Lone BA, Pokharel YR, Ahmed QN, Parveen S, Ali I, Singh SK, Chashoo G, Shafi S. 1,2,3-Triazole Tethered Hybrid Capsaicinoids as Antiproliferative Agents Active against Lung Cancer Cells (A549). ACS OMEGA 2022; 7:32078-32100. [PMID: 36119972 PMCID: PMC9476207 DOI: 10.1021/acsomega.2c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
A series of novel 1,2,3-triazole derivatives of capsaicin and its structural isomer (new natural product hybrid capsaicinoid) were synthesized by exploiting one-/two-point modification of capsaicin without altering the amide linkage (neck). The newly synthesized compounds were screened for their antiproliferative activity against an NCI panel of 60 cancer cell lines at a single dose of 10 μM. Most of the compounds have demonstrated reduced growth between 55 and 95%, whereas capsaicin (10) has shown reduced growth between 0 and 24%. Compounds showing more than 50% growth inhibition were further evaluated for the IC50 value. Among the cell lines tested, lung cancer cell lines (A549, NCI-H460) were found to be more susceptible toward most of the synthesized compounds. Compounds 14g and 14j demonstrated good antiproliferative activity in NCI-H460 with IC50 values of 6.65 and 5.55 μM, respectively, while compounds 18b, 18c, 18f, and 18m demonstrated potential antiproliferative activity in A549 cell lines with IC50 values ranging between 2.9 and 10.5 μM. Among the compounds, compound 18f was found to demonstrate the best activity with an IC50 value of 2.91 μM against A549. Furthermore, 18f induces cell cycle arrest at the S-phase and disrupts the mitochondrial membrane potential, reducing cell migration potential by inducing cellular apoptosis and higher ROS generation along with a decrease in mitochondrial membrane potential in addition to surface and nuclear morphological alterations such as a reduction in the number and shrinkage of cells coupled with nuclear blabbing indicating the sign of apoptosis of A549 non-small cell lung cancer cell lines. Compound 18f has emerged as a lead molecule and may serve as a template for further discovery of capsaicinoid scaffolds.
Collapse
Affiliation(s)
- Arif Khan
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Fatima Naaz
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Rafia Basit
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Deepak Das
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Piyush Bisht
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Majeed Shaikh
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Bilal Ahmad Lone
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Yuba Raj Pokharel
- Faculty
of Life Sciences and Biology, South Asian
University, New Delhi 110021, India
| | - Qazi Naveed Ahmed
- Natural
product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shazia Parveen
- Faculty
of Science, Chemistry Department, Taibah
University, Yanbu Branch, Yanbu 46423, Saudi
Arabia
| | - Intzar Ali
- Department
of Microbiology, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi 110062, India
| | - Shashank Kumar Singh
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Gousia Chashoo
- Pharmacology
Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Syed Shafi
- Department
of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| |
Collapse
|
10
|
Katheria S. Ruthenium Complexes as Potential Cancer Cell Growth Inhibitors for Targeted Chemotherapy. ChemistrySelect 2022. [DOI: 10.1002/slct.202201645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
11
|
Anandu KR, Jayan AP, Aneesh TP, Saiprabha VN. Pyrimidine derivatives as EGFR tyrosine kinase inhibitors in NSCLC: - A comprehensive review. Chem Biol Drug Des 2022; 100:599-621. [PMID: 35883248 DOI: 10.1111/cbdd.14124] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/11/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
EGFR positive NSCLC due to primary mutation (EGFR DEL19 & L858R) has been recognized as a crucial mediator of tumor progression. This led to the development and approval of EGFR tyrosine kinase inhibitors which addresses EGFR mediated NSCLC but fail to show potency after initial months of therapy due to acquired resistance (EGFR T790M, EGFR C797S). Extensive research allowed identification of drugs for EGFR positive NSCLC, wherein the majority of compounds have a pyrimidine substructure offering marked therapeutic benefits compared to chemotherapy. This current review outlines the diverse pyrimidine derivatives with amino-linked and fused pyrimidine scaffolds such as furo-pyrimidine, pyrimido-pyrimidine, thieno-pyrimidine, highlighting pyrimidine EGFR TK inhibitors reported in research emphasizing structural aspects, design approaches, inhibition potential. selectivity profile towards mutant EGFR conveyed through biological evaluation studies. Furthermore, mentioning the in-silico interaction profile of synthesized compounds for evaluating the binding affinity with key amino acids. The epilogue of review focuses on the recent research that drives forward to aid in the discovery and development of substituted amino and fused scaffolds of pyrimidine that can counteract the mutations and effectively manage EGFR positive NSCLC.
Collapse
Affiliation(s)
- K R Anandu
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - Ajay P Jayan
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - T P Aneesh
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| | - V N Saiprabha
- Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala, 682041, India
| |
Collapse
|
12
|
Yadav TT, Moin Shaikh G, Kumar MS, Chintamaneni M, YC M. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front Chem 2022; 10:861288. [PMID: 35769445 PMCID: PMC9234326 DOI: 10.3389/fchem.2022.861288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion. From the literature, it shows that pyrimidine is one of the most commonly studied heterocycles for its antiproliferative activity against EGFR inhibition. The authors have collated some interesting results in the heterocycle-fused pyrimidines that have been studied using different cell lines (sensitive and mutational) and in animal models to determine their activity and potency. It is quite clear that the fused systems are highly effective in inhibiting EGFR activity in cancer cells. Therefore, the structure–activity relationship (SAR) comes into play in determining the nature of the heterocycle and the substituents that are responsible for the increased activity and toxicity. Understanding the SAR of heterocycle-fused pyrimidines will help in getting a better overview of the molecules concerning their activity and potency profile as future EGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mayur YC
- *Correspondence: Mayur YC, mayur
| |
Collapse
|
13
|
Ouyang Y, Rong Y, Wang Y, Guo Y, Shan L, Yu X, Li L, Si J, Li X, Ma K. A Systematic Study of the Mechanism of Acacetin Against Sepsis Based on Network Pharmacology and Experimental Validation. Front Pharmacol 2021; 12:683645. [PMID: 34483900 PMCID: PMC8415621 DOI: 10.3389/fphar.2021.683645] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sepsis is a dysregulated systemic response to infection, and no effective treatment options are available. Acacetin is a natural flavonoid found in various plants, including Sparganii rhizoma, Sargentodoxa cuneata and Patrinia scabiosifolia. Studies have revealed that acacetin potentially exerts anti-inflammatory and antioxidative effects on sepsis. In this study, we investigated the potential protective effect of acacetin on sepsis and revealed the underlying mechanisms using a network pharmacology approach coupled with experimental validation and molecular docking. First, we found that acacetin significantly suppressed pathological damage and pro-inflammatory cytokine expression in mice with LPS-induced fulminant hepatic failure and acute lung injury, and in vitro experiments further confirmed that acacetin attenuated LPS-induced M1 polarization. Then, network pharmacology screening revealed EGFR, PTGS2, SRC and ESR1 as the top four overlapping targets in a PPI network, and GO and KEGG analyses revealed the top 20 enriched biological processes and signalling pathways associated with the therapeutic effects of acacetin on sepsis. Further network pharmacological analysis indicated that gap junctions may be highly involved in the protective effects of acacetin on sepsis. Finally, molecular docking verified that acacetin bound to the active sites of the four targets predicted by network pharmacology, and in vitro experiments further confirmed that acacetin significantly inhibited the upregulation of p-src induced by LPS and attenuated LPS-induced M1 polarization through gap junctions. Taken together, our results indicate that acacetin may protect against sepsis via a mechanism involving multiple targets and pathways and that gap junctions may be highly involved in this process.
Collapse
Affiliation(s)
- Yuanshuo Ouyang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yi Rong
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanming Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Yanli Guo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Liya Shan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xiushi Yu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Li Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China
| | - Junqiang Si
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| | - Xinzhi Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Pathophysiology, Shihezi University School of Medicine, Shihezi, China
| | - Ketao Ma
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Ministry of Education, Shihezi University School of Medicine, Shihezi, China.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, China.,Department of Physiology, Shihezi University School of Medicine, Shihezi, China
| |
Collapse
|
14
|
Deng YP, Gan QH, Gao X, Jiang XQ, Wang SF. A green and efficient method for one-step synthesis of novel oxazolo[3,2-c]pyrimidine derivatives in lactic acid. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Das D, Wang J, Hong J. Next-Generation Kinase Inhibitors Targeting Specific Biomarkers in Non-Small Cell Lung Cancer (NSCLC): A Recent Overview. ChemMedChem 2021; 16:2459-2479. [PMID: 33929777 DOI: 10.1002/cmdc.202100166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/27/2021] [Indexed: 12/25/2022]
Abstract
Lung cancer causes many deaths globally. Mutations in regulatory genes, irregularities in specific signal transduction events, or alterations of signalling pathways are observed in cases of non-small cell lung cancer (NSCLC). Over the past two decades, a few kinases have been identified, validated, and studied as biomarkers for NSCLC. Among them, EGFR, ALK, ROS1, MET, RET, NTRK, and BRAF are regarded as targetable biomarkers to cure and/or control the disease. In recent years, the US Food and Drug Administration (FDA) approved more than 15 kinase inhibitors targeting these NSCLC biomarkers. The kinase inhibitors significantly improved the progression-free survival (PFS) of NSCLC patients. Challenges still remain for metastatic diseases and advanced NSCLC cases. New discoveries of potent kinase inhibitors and rapid development of modern medical technologies will help to control NSCLC cases. This article provides an overview of the discoveries of various types of kinase inhibitors against NSCLC, along with medicinal chemistry aspects and related developments in next-generation kinase inhibitors that have been reported in recent years.
Collapse
Affiliation(s)
- Debasis Das
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jingbing Wang
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| | - Jian Hong
- Discovery Chemistry Research, Arromax Pharmatech Co., Ltd., Sangtiandao Innovation Park, No. 1 Huayun Road, SIP, Suzhou, 215123, China
| |
Collapse
|
16
|
Wu R, Yuan B, Li C, Wang Z, Song Y, Liu H. A narrative review of advances in treatment and survival prognosis of HER2-positive malignant lung cancers. J Thorac Dis 2021; 13:3708-3720. [PMID: 34277062 PMCID: PMC8264687 DOI: 10.21037/jtd-20-3265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2), as a receptor tyrosine kinase of EGF receptor family, whose mutation is often associated with even if less frequency but poor prognosis and shorter survival in pulmonary malignant tumor. HER2 status include mutation, overexpression, amplification and also some rare genotypes, detected by next generation sequencing (NGS), immunohistochemistry (IHC), and also fluorescence in situ hybridization (FISH). Different genotypes represent different therapeutic targets and indicate different clinical prognosis concluded by previous studies. Unfortunately, no standard guidelines for first-line treatment are widely recognized, and current therapeutic schedules include chemotherapy, radiotherapy, targeted therapy, and immunotherapy. Especially for patients with advanced metastasis, chemotherapy is based as a systemic therapy using studies of breast cancer or EGFR-positive lung adenocarcinoma as a template. Studies already explored treatment including EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and afatinib, and also trastuzumab and its conjugation like HER2-targeted antibody-drug conjugate trastuzumab emtansine (T-DM1) and conjugate trastuzumab deruxtecan (T-DXd). Also, he researches explored combination therapy with chemotherapy and TKIs or monoclonal antibodies. This review describes commonly used therapies for HER2-positive/HER2-overexpression patients and general relationship between genotypes of HER2, drug selection and final prognosis in order to provide suggestions for future diagnosis and treatment.
Collapse
Affiliation(s)
- Ranpu Wu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University of Medicine, Nanjing, China
| | - Bingxiao Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Chuling Li
- Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Zimu Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University of Medicine, Nanjing, China.,Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Southeast University of Medicine, Nanjing, China.,Department of Respiratory and Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing Medical University, Nanjing, China
| |
Collapse
|
17
|
Ayati A, Moghimi S, Toolabi M, Foroumadi A. Pyrimidine-based EGFR TK inhibitors in targeted cancer therapy. Eur J Med Chem 2021; 221:113523. [PMID: 33992931 DOI: 10.1016/j.ejmech.2021.113523] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022]
Abstract
Despite significant improvements of new treatment options, cancer continues to represent as one of the most common and fatal disease. The EGFR signaling pathway is considered as a significant approach in targeted therapy of cancers. Blocking the EGFR-driven pathway by inhibiting the intracellular tyrosine kinase domain of EGFR have shown considerable improvement in cancer therapy. In an effort to identify EGFR tyrosine kinase inhibitors (TKI), several small molecules especially pyrimidine containing derivatives have been designed by applying molecular simulation and evaluated the emergence of epigenetic mutation and resistance problems restricted the long-term effectiveness of such medication and explained the need for further investigations in this field. In recent years, the studies have been focused on genetic alterations on EGFR tyrosine kinase domain, which led to the design and synthesis of more selective and effective inhibitors. Herein, we give an overview of the importance and status of EGFR inhibitors in cancer therapy. In addition, we provide an update of the recent advances in design, discovery and development of novel pyrimidine containing compounds as promising selective EGFR TK inhibitors.
Collapse
Affiliation(s)
- Adileh Ayati
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Moghimi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Toolabi
- Department of Medicinal Chemistry, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Alireza Foroumadi
- Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Abstract
INTRODUCTION Molecular docking has been consolidated as one of the most important methods in the molecular modeling field. It has been recognized as a prominent tool in the study of protein-ligand complexes, to describe intermolecular interactions, to accurately predict poses of multiple ligands, to discover novel promising bioactive compounds. Molecular docking methods have evolved in terms of their accuracy and reliability; but there are pending issues to solve for improving the connection between the docking results and the experimental evidence. AREAS COVERED In this article, the author reviews very recent innovative molecular docking applications with special emphasis on reverse docking, treatment of protein flexibility, the use of experimental data to guide the selection of docking poses, the application of Quantum mechanics(QM) in docking, and covalent docking. EXPERT OPINION There are several issues being worked on in recent years that will lead to important breakthroughs in molecular docking methods in the near future These developments are related to more efficient exploration of large datasets and receptor conformations, advances in electronic description, and the use of structural information for guiding the selection of results.
Collapse
Affiliation(s)
- Julio Caballero
- Departamento De Bioinformática, Centro De Bioinformática, Simulación Y Modelado (CBSM), Facultad De Ingeniería, Universidad De Talca, Talca, Chile
| |
Collapse
|
19
|
Guo T, Ma S. Recent Advances in the Discovery of Multitargeted Tyrosine Kinase Inhibitors as Anticancer Agents. ChemMedChem 2020; 16:600-620. [PMID: 33179854 DOI: 10.1002/cmdc.202000658] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The treatment of cancer has been one of the most significant challenges for the medical field. Further research on the signal transduction pathway of tumor cells is driving the rapid development of antitumor agents targeting tyrosine kinases. However, most of the currently approved tyrosine kinase inhibitors based on the "single target/single drug" design are becoming less and less effective in the treatment of complex, heterogeneous, and multigenic cancers; this also results in resistance to chemotherapy. In contrast, multitargeted tyrosine kinase inhibitors (MT-TKIs) can effectively block multiple pathways of intracellular signal transduction. Therefore, they have therapeutic advantages over single-targeted inhibitors and have become a hotspot in antitumor drug research in recent years. This minireview summarizes recent advances in the discovery of MT-TKIs based on their chemical structures. In particular, we describe the kinase inhibitory and antitumor activity of promising compounds, as well as their structure - activity relationships (SARs).
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| |
Collapse
|