1
|
Matteucci F, Pavletić P, Bonifazi A, Del Bello F, Giorgioni G, Piergentili A, Amantini C, Zeppa L, Sabato E, Vistoli G, Garland R, Yano H, Castagna M, Mammoli V, Cappellacci L, Piergentili A, Quaglia W. New Arylpiperazines as Potent and Selective Dopamine D4 Receptor Ligands Potentially Useful to Treat Glioblastoma. J Med Chem 2025; 68:7441-7458. [PMID: 40156554 DOI: 10.1021/acs.jmedchem.4c03150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
The dopamine D4 receptor (D4R) has recently been proposed as an emerging target for treating glioblastoma (GBM). In this article, new piperazine ligands, analogues of the potent and selective D4R lead compounds 9 and 10, were prepared and evaluated for their affinity at D2-like receptor subtypes. The most promising results were obtained by replacing the N4-phenyl terminal of 9 with a naphthyl group. Indeed, α-naphthyl derivative 15 proved to have four times higher affinity for D4R than lead 9, whereas β-naphthyl compound 16 was about tenfold more selective for D4R than 9. These compounds behaved as D4R antagonists in both Gi/Go activation and β-arrestin2 recruitment assays. Interestingly, both decreased cell viability dose-dependently and altered the cell cycle of U87 MG, T98G, and U251 MG human GBM cell lines after 48 h treatment, inducing an increase in ROS levels and time-dependent mitochondrial depolarization.
Collapse
Affiliation(s)
- Federica Matteucci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
- Faculty of Biotechnology and Drug Development, University of Rijeka, Radmile Matejcic 2, 51000 Rijeka, Croatia
| | - Alessandro Bonifazi
- Department of Pharmacology and Toxicology, Center for Addiction Sciences and Therapeutics, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Laura Zeppa
- School of Biosciences and Veterinary Medicine, Immunopathology and Molecular Medicine Unit, University of Camerino, via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Emanuela Sabato
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Giulio Vistoli
- Department of Pharmaceutical Sciences, University of Milan, Via Mangiagalli 25, 20133 Milano, Italy
| | - Rian Garland
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hideaki Yano
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Center for Drug Discovery, Northeastern University, Boston, Massachusetts 02115, United States
| | - Monica Castagna
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Valerio Mammoli
- Center for Drug Discovery and Development-DMPK, Aptuit, an Evotec company, via A. Fleming, 4, 37135 Verona, Italy
| | - Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Alessia Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via Madonna delle Carceri (ChIP), 62032 Camerino, Italy
| |
Collapse
|
2
|
Hetzler B, Donthamsetti P, Peitsinis Z, Stanley C, Trauner D, Isacoff EY. Optical Control of Dopamine D2-like Receptors with Cell-Specific Fast-Relaxing Photoswitches. J Am Chem Soc 2023; 145:18778-18788. [PMID: 37586061 PMCID: PMC10472511 DOI: 10.1021/jacs.3c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Indexed: 08/18/2023]
Abstract
Dopamine D2-like receptors (D2R, D3R, and D4R) control diverse physiological and behavioral functions and are important targets for the treatment of a variety of neuropsychiatric disorders. Their complex distribution and activation kinetics in the brain make it difficult to target specific receptor populations with sufficient precision. We describe a new toolkit of light-activatable, fast-relaxing, covalently taggable chemical photoswitches that fully activate, partially activate, or block D2-like receptors. This technology combines the spatiotemporal precision of a photoswitchable ligand (P) with cell type and spatial specificity of a genetically encoded membrane anchoring protein (M) to which the P tethers. These tools set the stage for targeting endogenous D2-like receptor signaling with molecular, cellular, and spatiotemporal precision using only one wavelength of light.
Collapse
Affiliation(s)
- Belinda
E. Hetzler
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Prashant Donthamsetti
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zisis Peitsinis
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Cherise Stanley
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Dirk Trauner
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Department
of Chemistry and Department of Systems Pharmacology and Translational
Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ehud Y. Isacoff
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- Helen
Wills Neuroscience Institute, University
of California, Berkeley, California 94720, United States
- Weill Neurohub, University of California, Berkeley, Berkeley, California 94720, United States
- Molecular
Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Graßl F, Bock L, Huete-Huerta González Á, Schiller M, Gmeiner P, König J, Fromm MF, Hübner H, Heinrich MR. Exploring Structural Determinants of Bias among D4 Subtype-Selective Dopamine Receptor Agonists. J Med Chem 2023. [PMID: 37450764 DOI: 10.1021/acs.jmedchem.3c00537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The high affinity dopamine D4 receptor ligand APH199 and derivatives thereof exhibit bias toward the Gi signaling pathway over β-arrestin recruitment compared to quinpirole. Based on APH199, two novel groups of D4 subtype selective ligands were designed and evaluated, in which the original benzyl phenylsemicarbazide substructure was replaced by either a biphenylmethyl urea or a biphenyl urea moiety. Functional assays revealed a range of different bias profiles among the newly synthesized compounds, namely, with regard to efficacy, potency, and GRK2 dependency, in which bias factors range from 1 to over 300 and activation from 15% to over 98% compared to quinpirole. These observations demonstrate that within bias, an even more precise tuning toward a particular profile is possible, which─in a general sense─could become an important aspect in future drug development. Docking studies enabled further insight into the role of the ECL2 and the EPB in the emergence of bias, thereby taking advantage of the diversity of functionally selective D4 agonists now available.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Leonard Bock
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Álvaro Huete-Huerta González
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Martin Schiller
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Jörg König
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martin F Fromm
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Harald Hübner
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
4
|
Chestnykh D, Graßl F, Pfeifer C, Dülk J, Ebner C, Walters M, von Hörsten S, Kornhuber J, Kalinichenko LS, Heinrich M, Müller CP. Behavioural effects of APH199, a selective dopamine D4 receptor agonist, in animal models. Psychopharmacology (Berl) 2023; 240:1011-1031. [PMID: 36854793 PMCID: PMC10006056 DOI: 10.1007/s00213-023-06347-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
RATIONALE The dopamine D4 receptors (DRD4) play a key role in numerous brain functions and are involved in the pathogenesis of various psychiatric disorders. DRD4 ligands have been shown to moderate anxiety, reward and depression-like behaviours, and cognitive impairments. Despite a series of promising but ambiguous findings, the therapeutic advantages of DRD4 stimulation remain elusive. OBJECTIVES The investigation focused on the behavioural effects of the recently developed DRD4 agonist, APH199, to evaluate its impact on anxiety, anhedonia, behavioural despair, establishment and retrieval of alcohol reinforcement, and amphetamine (AMPH)-induced symptoms. METHODS Male C57BL/6 J mice and Sprague-Dawley rats were examined in five independent experiments. We assessed APH199 (0.1-5 mg/kg, i.p.) effects on a broad range of behavioural parameters in the open field (OF) test, conditioned place preference test (CPP), elevated plus maze (EPM), light-dark box (LDB), novelty suppressed feeding (NSF), forced swim test (FST), sucrose preference test (SPT), AMPH-induced hyperlocomotion test (AIH), and prepulse inhibition (PPI) of the acoustic startle response in AMPH-sensitized rats. RESULTS APH199 caused mild and sporadic anxiolytic and antidepressant effects in EPM and FST, but no remarkable impact on behaviour in other tests in mice. However, we found a significant increase in AMPH-induced hyperactivity, suggesting an exaggeration of the psychotic-like responses in the AMPH-sensitized rats. CONCLUSIONS Our data challenged the hypothesis of the therapeutic benefits of DRD4 agonists, pointing out a possible aggravation of psychosis. We suggest a need for further preclinical studies to ensure the safety of antipsychotics with DRD4 stimulating properties.
Collapse
Affiliation(s)
- Daria Chestnykh
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Fabian Graßl
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Canice Pfeifer
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Jonas Dülk
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Chiara Ebner
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Mona Walters
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Stephan von Hörsten
- Department of Experimental Therapy, Preclinical Experimental Center, Friedrich-Alexander-University of Erlangen-Nuremberg, Palmsanlage 5, 91054, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Liubov S Kalinichenko
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - Markus Heinrich
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nuremberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, University Clinic, Friedrich-Alexander-University of Erlangen-Nuremberg, Schwabachanlage 6, 91054, Erlangen, Germany.
- Centre for Drug Research, University Sains Malaysia, Penang, Minden, Malaysia.
| |
Collapse
|
5
|
Burström V, Ågren R, Betari N, Valle-León M, Garro-Martínez E, Ciruela F, Sahlholm K. Dopamine-induced arrestin recruitment and desensitization of the dopamine D4 receptor is regulated by G protein-coupled receptor kinase-2. Front Pharmacol 2023; 14:1087171. [PMID: 36778010 PMCID: PMC9911804 DOI: 10.3389/fphar.2023.1087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The dopamine D4 receptor (D4R) is expressed in the retina, prefrontal cortex, and autonomic nervous system and has been implicated in attention deficit hyperactivity disorder (ADHD), substance use disorders, and erectile dysfunction. D4R has also been investigated as a target for antipsychotics due to its high affinity for clozapine. As opposed to the closely related dopamine D2 receptor (D2R), dopamine-induced arrestin recruitment and desensitization at the D4R have not been studied in detail. Indeed, some earlier investigations could not detect arrestin recruitment and desensitization of this receptor upon its activation by agonist. Here, we used a novel nanoluciferase complementation assay to study dopamine-induced recruitment of β-arrestin2 (βarr2; also known as arrestin3) and G protein-coupled receptor kinase-2 (GRK2) to the D4R in HEK293T cells. We also studied desensitization of D4R-evoked G protein-coupled inward rectifier potassium (GIRK; also known as Kir3) current responses in Xenopus oocytes. Furthermore, the effect of coexpression of GRK2 on βarr2 recruitment and GIRK response desensitization was examined. The results suggest that coexpression of GRK2 enhanced the potency of dopamine to induce βarr2 recruitment to the D4R and accelerated the rate of desensitization of D4R-evoked GIRK responses. The present study reveals new details about the regulation of arrestin recruitment to the D4R and thus increases our understanding of the signaling and desensitization of this receptor.
Collapse
Affiliation(s)
- Viktor Burström
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Nibal Betari
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Emilio Garro-Martínez
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Department of Neuroscience, Karolinska Institutet, Solna, Sweden,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain,*Correspondence: Kristoffer Sahlholm,
| |
Collapse
|
6
|
Velip L, Dhiman V, Kushwah BS, Golla VM, Gananadhamu S. Identification and characterization of urapidil stress degradation products by LC-Q-TOF-MS and NMR: Toxicity prediction of degradation products. J Pharm Biomed Anal 2022; 211:114612. [DOI: 10.1016/j.jpba.2022.114612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 10/19/2022]
|
7
|
Babin V, Sallustrau A, Loreau O, Caillé F, Goudet A, Cahuzac H, Del Vecchio A, Taran F, Audisio D. A general procedure for carbon isotope labeling of linear urea derivatives with carbon dioxide. Chem Commun (Camb) 2021; 57:6680-6683. [PMID: 34132265 DOI: 10.1039/d1cc02665h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Carbon isotope labeling is a traceless technology, which allows tracking the fate of organic compounds either in the environment or in living organisms. This article reports on a general approach to label urea derivatives with all carbon isotopes, including 14C and 11C, based on a Staudinger aza-Wittig sequence. It provides access to all aliphatic/aromatic urea combinations.
Collapse
Affiliation(s)
- Victor Babin
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Antoine Sallustrau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Olivier Loreau
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay, 91401, Orsay, France
| | - Amélie Goudet
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Héloïse Cahuzac
- Université Paris-Saclay, Département Médicaments et Technologies pour la santé (DMTS), CEA, INRAE, SIMoS, Gif-sur-Yvette 91191, France
| | - Antonio Del Vecchio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Frédéric Taran
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| | - Davide Audisio
- Université Paris Saclay, CEA Service de Chimie Bio-organique et Marquage, DMTS, Gif-sur-Yvette, F-91191, France.
| |
Collapse
|
8
|
Elek M, Djokovic N, Frank A, Oljacic S, Zivkovic A, Nikolic K, Stark H. Synthesis, in silico, and in vitro studies of novel dopamine D 2 and D 3 receptor ligands. Arch Pharm (Weinheim) 2021; 354:e2000486. [PMID: 33615541 DOI: 10.1002/ardp.202000486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 12/30/2022]
Abstract
Dopamine is an important neurotransmitter in the human brain and its altered concentrations can lead to various neurological diseases. We studied the binding of novel compounds at the dopamine D2 (D2 R) and D3 (D3 R) receptor subtypes, which belong to the D2 -like receptor family. The synthesis, in silico, and in vitro characterization of 10 dopamine receptor ligands were performed. Novel ligands were docked into the D2 R and D3 R crystal structures to examine the precise binding mode. A quantum mechanics/molecular mechanics study was performed to gain insights into the nature of the intermolecular interactions between the newly introduced pentafluorosulfanyl (SF5 ) moiety and D2 R and D3 R. A radioligand displacement assay determined that all of the ligands showed moderate-to-low nanomolar affinities at D2 R and D3 R, with a slight preference for D3 R, which was confirmed in the in silico studies. N-{4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl}-4-(pentafluoro-λ6-sulfanyl)benzamide (7i) showed the highest D3 R affinity and selectivity (pKi values of 7.14 [D2 R] and 8.42 [D3 R]).
Collapse
Affiliation(s)
- Milica Elek
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Nemanja Djokovic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| | - Katarina Nikolic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, Duesseldorf, NRW, Germany
| |
Collapse
|
9
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|