1
|
Zhu Y, Wang G, Wang K, Sun M, Zhao L, Zeng Y, Yan C, Ji Y, Hou Y, Li Z, Tao J. SCN8A Epileptic Encephalopathy Mutation Displays a Loss-of-Function Phenotype and Distinct Insensitivity to Valproate. ACS Chem Neurosci 2025; 16:1132-1143. [PMID: 40033685 DOI: 10.1021/acschemneuro.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025] Open
Abstract
Voltage-gated sodium channels are the main targets of antiepileptic drugs, such as sodium valproate (VPA). Single nucleotide polymorphisms (SNPs) in the Nav1.6 isoform (SCN8A) have been reported to be closely associated with motor dysfunction in pediatric akathisia epileptica. In this study, we conducted a genetic screening of pediatric patients with seizures treated solely with VPA and identified two novel missense mutations of SCN8A (A1534V and Q1853H). Electrophysiological results revealed that the peak currents of the A1534V variant were smaller compared to that of the wild-type (WT) channel. The A1534V variant also caused a positive shift in the I-V curve, indicating a change in the voltage dependence of activation compared to the WT channels. In contrast, VPA induced a significant negative shift in the inactivation of both WT and A1534V mutant. However, the inhibition of currents by VPA was weaker in the A1534V variant than in WT. Furthermore, the recovery time constant of the A1534V variant was shorter than that of WT when treated with VPA. Regrettably, although the Q1853H variant can be expressed in HEK293T cells, the detected current is too small (approximately 50 pA). In conclusion, our results suggest that the A1534V mutation is a novel loss-of-function variant that exhibits moderate insensitivity to VPA. These results underscore the importance of Nav1.6 as a key target in epilepsy and highlight the necessity of analyzing its role in the pathological process.
Collapse
Affiliation(s)
- Yudan Zhu
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Guangfei Wang
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321099, China
| | - Meng Sun
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Lu Zhao
- Department of Neurology and Central Laboratory, Putuo Clinical Medical School, Anhui Medical University, Shanghai 20062, China
| | - Yunqing Zeng
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Cuina Yan
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Yonghua Ji
- Joint Laboratory of Nanxiang Branch of Ruijin Hospital-School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yangbo Hou
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
| | - Zhiping Li
- Department of Clinical Pharmacy, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai 201100, China
| | - Jie Tao
- Central Laboratory, Department of Neurology and Neurosurgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 20062, China
- Central Laboratory, Nanxiang Branch of Ruijin Hospital, Shanghai 201802, China
- Joint Laboratory of Nanxiang Branch of Ruijin Hospital-School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Monat J, Altieri LG, Enrique N, Sedán D, Andrinolo D, Milesi V, Martín P. Direct Inhibition of BK Channels by Cannabidiol, One of the Principal Therapeutic Cannabinoids Derived from Cannabis sativa. JOURNAL OF NATURAL PRODUCTS 2024; 87:1368-1375. [PMID: 38708937 DOI: 10.1021/acs.jnatprod.3c01274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Cannabidiol (CBD), one of the main Cannabis sativa bioactive compounds, is utilized in the treatment of major epileptic syndromes. Its efficacy can be attributed to a multimodal mechanism of action that includes, as potential targets, several types of ion channels. In the brain, CBD reduces the firing frequency in rat hippocampal neurons, partly prolonging the duration of action potentials, suggesting a potential blockade of voltage-operated K+ channels. We postulate that this effect might involve the inhibition of the large-conductance voltage- and Ca2+-operated K+ channel (BK channel), which plays a role in the neuronal action potential's repolarization. Thus, we assessed the impact of CBD on the BK channel activity, heterologously expressed in HEK293 cells. Our findings, using the patch-clamp technique, revealed that CBD inhibits BK channel currents in a concentration-dependent manner with an IC50 of 280 nM. The inhibition is through a direct interaction, reducing both the unitary conductance and voltage-dependent activation of the channel. Additionally, the cannabinoid significantly delays channel activation kinetics, indicating stabilization of the closed state. These effects could explain the changes induced by CBD in action potential shape and duration, and they may contribute to the observed anticonvulsant activity of this cannabinoid.
Collapse
Affiliation(s)
- Juliana Monat
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Lucía González Altieri
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Nicolás Enrique
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Daniela Sedán
- Centro de Investigaciones en Medioambiente (CIM), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard. 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Darío Andrinolo
- Centro de Investigaciones en Medioambiente (CIM), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard. 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Verónica Milesi
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| | - Pedro Martín
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata - CICPBA - CONICET, Boulevard 120 no. 1489, La Plata, CP 1900, Provincia de Buenos Aires, Argentina
| |
Collapse
|
3
|
Liu H, Qu D, Cao Y, Li H, Wu X, Zhu Y, Tao J, Li Y, Cao C. TAT-Modified Martentoxin Displays Intravenous Antiseizure Activities. ACS Chem Neurosci 2024; 15:205-214. [PMID: 38112732 DOI: 10.1021/acschemneuro.3c00744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023] Open
Abstract
Epilepsy is a chronic disease of brain dysfunction, which arises from imbalance between excitatory and inhibitory activities in neural circuits. Previously, we reported that peptide Martentoxin (MarTX), from scorpion Buthus martensii Karsch, displayed antiseizure activities by specifically inhibiting BK(α + β4) channel currents. Injection of MarTX into the hippocampal region of mice significantly alleviated convulsive seizures. However, intravenous injection of MarTX had no antiepileptic efficacy due to the blood-brain barrier (BBB). To address this, here, we designed cell-penetrating peptide TAT-modified MarTX, in which the linker containing three glycines was put between TAT and the N-terminus of MarTX (forming MTX-N-TAT) or between TAT and the C-terminus of MarTX (forming MTX-C-TAT), respectively. We prepared them in a large amount through Escherichia coli overexpression system and then probed their antiseizure activities. Our results indicated that intravenous injection of MTX-C-TAT showed significant therapeutic efficacy of antiseizure. It increased seizure latency, reduced the total seizure duration and the number of seizures at stages 3, 4, and 5, inhibited hippocampal neuronal hyperexcitability, and exhibited neuroprotective effects on hippocampal neurons. These studies implied that MTX-C-TAT displayed intravenous antiseizure activities properly through crossing BBB and would be a potential antiepileptic drug in the future.
Collapse
Affiliation(s)
- Huan Liu
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiao Qu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yunzhu Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Nanjing Fenglin Biotechnology Co., 2 Taixi Road, Pukou District, Nanjing 210031, China
| | - Haiting Li
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiaoyu Wu
- Center for Supramolecular Chemistry and Catalysis, Department of Chemistry, College of Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yudan Zhu
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Tao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yiming Li
- School of pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chunyang Cao
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
4
|
Xia Z, He D, Wu Y, Kwok HF, Cao Z. Scorpion venom peptides: Molecular diversity, structural characteristics, and therapeutic use from channelopathies to viral infections and cancers. Pharmacol Res 2023; 197:106978. [PMID: 37923027 DOI: 10.1016/j.phrs.2023.106978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
Animal venom is an important evolutionary innovation in nature. As one of the most representative animal venoms, scorpion venom contains an extremely diverse set of bioactive peptides. Scorpion venom peptides not only are 'poisons' that immobilize, paralyze, kill, or dissolve preys but also become important candidates for drug development and design. Here, the review focuses on the molecular diversity of scorpion venom peptides, their typical structural characteristics, and their multiple therapeutic or pharmaceutical applications in channelopathies, viral infections and cancers. Especially, the group of scorpion toxin TRPTx targeting transient receptor potential (TRP) channels is systematically summarized and worthy of attention because TRP channels play a crucial role in the regulation of homeostasis and the occurrence of diseases in human. We also further establish the potential relationship between the molecular characteristics and functional applications of scorpion venom peptides to provide a research basis for modern drug development and clinical utilization of scorpion venom resources.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian, China
| | - Dangui He
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China
| | - Hang Fai Kwok
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macao; MoE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macao.
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Shenzhen Research Institute, Wuhan University, Wuhan, China; Bio-drug Research Center, Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Qin C, Yang X, Zhang Y, Deng G, Huang X, Zuo Z, Sun F, Cao Z, Chen Z, Wu Y. Functional Characterization of a New Degradation Peptide BmTX4-P1 from Traditional Chinese Scorpion Medicinal Material. Toxins (Basel) 2023; 15:toxins15050340. [PMID: 37235373 DOI: 10.3390/toxins15050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and β-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Deng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| |
Collapse
|
6
|
Han QT, Yang WQ, Zang C, Zhou L, Zhang CJ, Bao X, Cai J, Li F, Shi Q, Wang XL, Qu J, Zhang D, Yu SS. The toxic natural product tutin causes epileptic seizures in mice by activating calcineurin. Signal Transduct Target Ther 2023; 8:101. [PMID: 36894540 PMCID: PMC9998865 DOI: 10.1038/s41392-023-01312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/12/2022] [Accepted: 01/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tutin, an established toxic natural product that causes epilepsy in rodents, is often used as a tool to develop animal model of acute epileptic seizures. However, the molecular target and toxic mechanism of tutin were unclear. In this study, for the first time, we conducted experiments to clarify the targets in tutin-induced epilepsy using thermal proteome profiling. Our studies showed that calcineurin (CN) was a target of tutin, and that tutin activated CN, leading to seizures. Binding site studies further established that tutin bound within the active site of CN catalytic subunit. CN inhibitor and calcineurin A (CNA) knockdown experiments in vivo proved that tutin induced epilepsy by activating CN, and produced obvious nerve damage. Together, these findings revealed that tutin caused epileptic seizures by activating CN. Moreover, further mechanism studies found that N-methyl-D-aspartate (NMDA) receptors, gamma-aminobutyric acid (GABA) receptors and voltage- and Ca2+- activated K+ (BK) channels might be involved in related signaling pathways. Our study fully explains the convulsive mechanism of tutin, which provides new ideas for epilepsy treatment and drug development.
Collapse
Affiliation(s)
- Qing-Tong Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Wan-Qi Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Caixia Zang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Linchao Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jie Cai
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Fangfei Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Qinyan Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiao-Liang Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jing Qu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Dan Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Shi-Shan Yu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
7
|
Liu X, Tao J, Zhang S, Lan W, Yao Y, Wang C, Xue H, Ji Y, Li G, Cao C. Development of charybdotoxin Q18F variant as a selective peptide blocker of neuronal BK(α + β4) channel for the treatment of epileptic seizures. Protein Sci 2022; 31:e4506. [PMID: 36369672 PMCID: PMC9703589 DOI: 10.1002/pro.4506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/14/2022]
Abstract
Epilepsy is the results from the imbalance between inhibition and excitation in neural circuits, which is mainly treated by some chemical drugs with side effects. Gain-of-function of BK channels or knockout of its β4 subunit associates with spontaneous epilepsy. Currently, few reports were published about the efficacy of BK(α + β4) channel modulators in epilepsy prevention. Charybdotoxin is a non-specific inhibitor of BK and other K+ channels. Here, by nuclear magnetic resonance (NMR) and other biochemical techniques, we found that charybdotoxin might interact with the extracellular loop of human β4 subunit (i.e., hβ4-loop) of BK(α + β4) channel at a molar ratio 4:1 (hβ4-loop vs. charybdotoxin). Charybdotoxin enhanced its ability to prevent K+ current of BK(α + β4 H101Y) channel. The charybdotoxin Q18F variant selectively reduced the neuronal spiking frequency and increased interspike intervals of BK(α + β4) channel by π-π stacking interactions between its residue Phe18 and residue His101 of hβ4-loop. Moreover, intrahippocampal infusion of charybdotoxin Q18F variant significantly increased latency time of seizure, reduced seizure duration and seizure numbers on pentylenetetrazole-induced pre-sensitized rats, inhibited hippocampal hyperexcitability and c-Fos expression, and displayed neuroprotective effects on hippocampal neurons. These results implied that charybdotoxin Q18F variant could be potentially used for intractable epilepsy treatment by therapeutically targeting BK(α + β4) channel.
Collapse
Affiliation(s)
- Xinlian Liu
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of ScienceBeijingChina
| | - Jie Tao
- Department of Neurology and Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Shuzhang Zhang
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Wenxian Lan
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Yu Yao
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Hongjuan Xue
- National Facility for Protein Science in Shanghai, Zhangjiang LabShanghai Advanced Research Institute, Chinese Academy of SciencesShanghaiChina
| | - Yonghua Ji
- Institute of Biomembrane and BiopharmaceuticsShanghai UniversityShanghaiChina
| | - Guoyi Li
- Department of Neurology and Central Laboratory, Putuo HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Product Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of ScienceBeijingChina
| |
Collapse
|
8
|
Yang C, Yang Z, Tong K, Wang J, Yang W, Yu R, Jiang F, Ji Y. Homology modeling and molecular docking simulation of martentoxin as a specific inhibitor of the BK channel. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:71. [PMID: 35282126 PMCID: PMC8848368 DOI: 10.21037/atm-21-6967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/13/2022] [Indexed: 11/18/2022]
Abstract
Background Large conductance calcium-activated potassium channel (BK channel) is gated by both voltage and calcium ions and is widely distributed in excitable and nonexcitable cells. BK channel plays an important role in epilepsy and other diseases, but BK channel subtype-specific drugs are still extremely rare. Martentoxin was previously isolated from the venom of members of Scorpionidae and shown to be composed of 37 amino acids. Research has shown that the pharmacological selectivity of martentoxin to the BK channel is higher than that to other potassium channels. Therefore, it is of great significance to study the mechanism of interaction between martentoxin and BK channels. Methods The three-dimensional structure of BK channel pore region was constructed by homologous modeling method, and the key amino acid sites of BK channel interaction with martentoxin were analyzed by protein-protein docking, molecular dynamic simulation and virtual alanine mutation. Results Based on homologous modeling of BK channel pore structure and protein-protein docking analysis, Phe1, Lys28 and Arg35 of martentoxin were found to be key amino acids in toxin BK channel interaction. Conclusions This study reveals the structural basis of martentoxin interaction with BK channel. These results will contribute to the design of BK channel specific blockers based on the structure of martentoxin.
Collapse
Affiliation(s)
- Chao Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Zihao Yang
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Kuiyuan Tong
- College of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Jiawei Wang
- School of Life and Medicine Sciences, Shanghai University, Shanghai, China
| | - Wanli Yang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Ruihua Yu
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Feng Jiang
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China
| | - Yonghua Ji
- Translational Institute for Cancer Pain, Chongming Hospital Affiliated to Shanghai University of Medicine and Health Sciences (Xinhua Hospital Chongming Branch), Shanghai, China.,School of Life and Medicine Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
9
|
Verhoog QP, Holtman L, Aronica E, van Vliet EA. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front Neurol 2020; 11:591690. [PMID: 33324329 PMCID: PMC7726323 DOI: 10.3389/fneur.2020.591690] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are key homeostatic regulators in the central nervous system and play important roles in physiology. After brain damage caused by e.g., status epilepticus, traumatic brain injury, or stroke, astrocytes may adopt a reactive phenotype. This process of reactive astrogliosis is important to restore brain homeostasis. However, persistent reactive astrogliosis can be detrimental for the brain and contributes to the development of epilepsy. In this review, we will focus on physiological functions of astrocytes in the normal brain as well as pathophysiological functions in the epileptogenic brain, with a focus on acquired epilepsy. We will discuss the role of astrocyte-related processes in epileptogenesis, including reactive astrogliosis, disturbances in energy supply and metabolism, gliotransmission, and extracellular ion concentrations, as well as blood-brain barrier dysfunction and dysregulation of blood flow. Since dysfunction of astrocytes can contribute to epilepsy, we will also discuss their role as potential targets for new therapeutic strategies.
Collapse
Affiliation(s)
- Quirijn P. Verhoog
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Linda Holtman
- Leiden Academic Center for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleonora Aronica
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | - Erwin A. van Vliet
- Department of Neuropathology, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|