1
|
Cheng Z, Zhang Y, Du L, Wang W, Chai X, He M, Zhang H, Wu D, Lu J, Zhang S, Feng B, Yang L, Liu M, Lu W. Subtle Structural Modifications Spanning from EP4 Antagonism to EP2/EP4 Dual Antagonism: A Novel Class of Thienocyclic-Based Derivatives. J Med Chem 2025; 68:1587-1607. [PMID: 39757828 DOI: 10.1021/acs.jmedchem.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The development of dual prostaglandin E2 receptors 2/4 (EP2/EP4) antagonists represents an attractive strategy for cancer immunotherapy. Herein, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives with potent EP2/EP4 dual antagonism were discovered by fine-tuned structural modifications. The biphenyl side chain was found to be the key pharmacophore for the transition from EP4 antagonism to EP2/EP4 dual antagonism. The introduction of large sterically hindered segments posed challenges on obtaining EP2 potency, while having minimal impact on EP4 potency. Molecular dynamics simulations verified that the EP2 pocket is relatively narrow compared to EP4, and the key residues surrounding the EP2 pocket impose spatial restrictions on the entry of antagonists. Representative compound 29 (CZY-1068) significantly reduced PGE2-induced expression of immunosuppression-related genes in macrophages. Notably, compound 29 elicited robust antitumor efficacy in the syngeneic MC38 tumor model. Taken together, this study provides a proof-of-concept for obtaining novel potent dual EP2/EP4 antagonists based on rational structural modifications.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Limin Du
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaolei Chai
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mengxian He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Sen Zhang
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Bo Feng
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- University Engineering Research Center of Oncolytic & Nanosystem Development, Nanning, Guangxi 530021, China
| |
Collapse
|
2
|
Wang H, Yang X, Li Y, Ze S, Feng B, Weng Y, Gao A, Song G, Liu M, Xie Q, Wang Y, Lu W. Subtle Structural Changes across the Boundary between A 2AR/A 2BR Dual Antagonism and A 2BR Antagonism: A Novel Class of 2-Aminopyrimidine-Based Derivatives. J Med Chem 2024; 67:5075-5092. [PMID: 38483150 DOI: 10.1021/acs.jmedchem.4c00250] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Aberrantly elevated adenosine in the tumor microenvironment exerts its immunosuppressive functions through adenosine receptors A2AR and A2BR. Antagonism of A2AR and A2BR has the potential to suppress tumor growth. Herein, we report a systemic assessment of the effects of an indole modification at position 4, 5, 6, or 7 on both A2AR/A2BR activity and selectivity of novel 2-aminopyrimidine compounds. Substituting indole at the 4-/5-position produced potent A2AR/A2BR dual antagonism, whereas the 6-position of indole substitution gave highly selective A2BR antagonism. Molecular dynamics simulation showed that the 5-cyano compound 7ai had a lower binding free energy than the 6-cyano compound 7aj due to water-bridged hydrogen bond interactions with E169 or F168 in A2AR. Of note, dual A2AR/A2BR antagonism by compound 7ai can profoundly promote the activation and cytotoxic function of T cells. This work provided a strategy for obtaining novel dual A2AR/A2BR or A2BR antagonists by fine-tuning structural modification.
Collapse
Affiliation(s)
- Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yan Li
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Bo Feng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuan Weng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Aoqi Gao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
- Shanghai Yuyao Biotech Co., Ltd., Shanghai 200041, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
3
|
Rastogi SK, Ciliberto VC, Trevino MZ, Campbell BA, Brittain WJ. Green Approach Toward Triazole Forming Reactions for Developing Anticancer Drugs. Curr Org Synth 2024; 21:380-420. [PMID: 37157212 DOI: 10.2174/1570179420666230508125144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
Compounds containing triazole have many significant applications in the dye and ink industry, corrosion inhibitors, polymers, and pharmaceutical industries. These compounds possess many antimicrobial, antioxidant, anticancer, antiviral, anti-HIV, antitubercular, and anticancer activities. Several synthetic methods have been reported for reducing time, minimizing synthetic steps, and utilizing less hazardous and toxic solvents and reagents to improve the yield of triazoles and their analogues synthesis. Among the improvement in methods, green approaches towards triazole forming biologically active compounds, especially anticancer compounds, would be very important for pharmaceutical industries as well as global research community. In this article, we have reviewed the last five years of green chemistry approaches on click reaction between alkyl azide and alkynes to install 1,2,3-triazole moiety in natural products and synthetic drug-like molecules, such as in colchicine, flavanone cardanol, bisphosphonates, thiabendazoles, piperazine, prostanoid, flavonoid, quinoxalines, C-azanucleoside, dibenzylamine, and aryl-azotriazole. The cytotoxicity of triazole hybrid analogues was evaluated against a panel of cancer cell lines, including multidrug-resistant cell lines.
Collapse
Affiliation(s)
- Shiva K Rastogi
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Veronica C Ciliberto
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Monica Z Trevino
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Brooke A Campbell
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - William J Brittain
- Department of Chemistry and Biochemistry, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| |
Collapse
|
4
|
Bagherzadeh N, Amiri M, Sardarian AR. Novel Cu(ii) acidic deep eutectic solvent as an efficient and green multifunctional catalytic solvent system in base-free conditions to synthesize 1,4-disubstituted 1,2,3-triazoles. RSC Adv 2023; 13:36403-36415. [PMID: 38099257 PMCID: PMC10719904 DOI: 10.1039/d3ra06570g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023] Open
Abstract
A novel green Cu(ii)-acidic deep eutectic solvent (Cu(ii)-ADES) bearing copper salt, choline chloride, and gallic acid ([ChCl]4[2GA-Cu(ii)]) was synthesized and thoroughly specified by physicochemical approaches such as FT-IR, EDX, XRD, Mapping, ICP, and UV-Vis analyses and physicochemical properties. After the detection of authentic data, the central composite design (CCD) was utilized to accomplish the pertaining tests and develop the optimum condition, and, in the following, [ChCl]4[2GA-Cu(ii)] was applied as a green multifunctional catalytic solvent system in reducing agent-free and base-free condition for the three-component click reaction from sodium azide, alkyl, allyl, ester, and benzyl halide, and terminal alkyne made from amines and caprolactam as a cyclic amide to furnish a successful new library of 1,4-disubstituted 1,2,3-triazoles with a yield of up to 98%. The Cu(ii)-ADES is stable and can comfortably be recovered and reused without a considerable decline in its acting for seven cycles. This triazole synthesizing methodology is distinguished via its atom economy, operational facility, short reaction times, diverse substrate scope, and high performance for large-scale synthesis of the desired products including: -CN and -NO2 as efficient functional groups.
Collapse
Affiliation(s)
- Nastaran Bagherzadeh
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| | - Mohammad Amiri
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| | - Ali Reza Sardarian
- Chemistry Department, College of Sciences, Shiraz University Shiraz Iran +98 7136460788 +98 7136137107
| |
Collapse
|
5
|
Stebletsova IA, Larin AA, Ananyev IV, Fershtat LL. Regioselective Synthesis of NO-Donor (4-Nitro-1,2,3-triazolyl)furoxans via Eliminative Azide-Olefin Cycloaddition. Molecules 2023; 28:6969. [PMID: 37836813 PMCID: PMC10574565 DOI: 10.3390/molecules28196969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
A facile and efficient method for the regioselective [3 + 2] cycloaddition of 4-azidofuroxans to 1-dimethylamino-2-nitroethylene under p-TSA catalysis affording (4-nitro-1,2,3-triazolyl)furoxans was developed. This transformation is believed to proceed via eliminative azide-olefin cycloaddition resulting in its complete regioselectivity. The developed protocol has a broad substrate scope and enables a straightforward assembly of the 4-nitro-1,2,3-triazole motif. Moreover, synthesized (4-nitro-1,2,3-triazolyl)furoxans were found to be capable of NO release in a broad range of concentrations, thus providing a novel platform for future drug design and related biomedical applications of heterocyclic NO donors.
Collapse
Affiliation(s)
- Irina A. Stebletsova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Alexander A. Larin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| | - Ivan V. Ananyev
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, GSP-1, Leninsky Prospect, 31, 119991 Moscow, Russia;
| | - Leonid L. Fershtat
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia; (I.A.S.); (A.A.L.)
| |
Collapse
|
6
|
Das D, Qiao D, Liu Z, Xie L, Li Y, Wang J, Jia J, Cao Y, Hong J. Discovery of Novel, Selective Prostaglandin EP4 Receptor Antagonists with Efficacy in Cancer Models. ACS Med Chem Lett 2023; 14:727-736. [PMID: 37312837 PMCID: PMC10258902 DOI: 10.1021/acsmedchemlett.2c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
Prostaglandin E2 (PGE2) receptor 4 (EP4) is one of four EP receptors commonly upregulated in the tumor microenvironment and plays vital roles in stimulating cell proliferation, invasion, and metastasis. Biochemical blockade of the PGE2-EP4 signaling pathway is a promising strategy for controlling inflammatory and immune related disorders. Recently combination therapies of EP4 antagonists with anti-PD-1 or chemotherapy agents have emerged in clinical studies for lung, breast, colon, and pancreatic cancers. Herein, a novel series of indole-2-carboxamide derivatives were identified as selective EP4 antagonists, and SAR studies led to the discovery of the potent compound 36. Due to favorable pharmacokinetics properties and good oral bioavailability (F = 76%), compound 36 was chosen for in vivo efficacy studies. Compound 36 inhibited tumor growth in a CT-26 colon cancer xenograft better than E7046 and a combination of 36 with capecitabine significantly suppressed tumor growth (TGI up to 94.26%) in mouse models.
Collapse
Affiliation(s)
- Debasis Das
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Dandan Qiao
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Zhonghe Liu
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Lingzhi Xie
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Yong Li
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jingbing Wang
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jianhe Jia
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Yuxi Cao
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| | - Jian Hong
- Arromax Pharmatech Co. Ltd. Sangtiandao Innovation Park, No.
1 Huayun Road, SIP, Suzhou 215123, P. R. China
| |
Collapse
|
7
|
He P, Feng J, Xia X, Sun Y, He J, Guan T, Peng Y, Zhang X, Liu M, Pang X, Chen Y. Discovery of a Potent and Oral Available Complex I OXPHOS Inhibitor That Abrogates Tumor Growth and Circumvents MEKi Resistance. J Med Chem 2023; 66:6047-6069. [PMID: 37130350 DOI: 10.1021/acs.jmedchem.2c01844] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Targeting oxidative phosphorylation (OXPHOS) has emerged as a promising therapeutic strategy for cancer therapy. Here, we discovered a 1H-1,2,3-triazole derivative HP661 as a highly potent and orally available OXPHOS inhibitor that effectively blocked the activity of mitochondrial complex I. HP661 specifically compromised the mitochondrial oxygen consumption of high-OXPHOS lung cancer cells but not that of low-OXPHOS lung cancer cells or normal cells in the low nanomolar range. Notably, mitogen-activated protein kinase kinase (MEK) inhibitor (trametinib)-resistant lung cancer cells with high levels of OXPHOS also showed marked sensitivity to HP661, as indicated by decreased clonogenic growth and increased cell apoptosis upon treatment. In a mouse model of high-OXPHOS lung cancer, HP661 treatment not only significantly suppressed tumor growth but also augmented the therapeutic efficacy of trametinib by impairing tumor mitochondrial respiration. In summary, we identified HP661 as a highly effective OXPHOS inhibitor to abrogate the growth of high OXPHOS-dependent tumors and conquer high OXPHOS-mediated drug resistance.
Collapse
Affiliation(s)
- Peng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Juanjuan Feng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Xinting Xia
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yue Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jia He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tian Guan
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yangrui Peng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xueli Zhang
- Joint Center for Translational Medicine, Southern Medical University Affiliated Fengxian Hospital, Shanghai 201499, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yihua Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Cheng Z, Wang Y, Zhang Y, Zhang C, Wang M, Wang W, He J, Wang Y, Zhang H, Zhang Q, Ding C, Wu D, Yang L, Liu M, Lu W. Discovery of 2 H-Indazole-3-carboxamide Derivatives as Novel Potent Prostanoid EP4 Receptor Antagonists for Colorectal Cancer Immunotherapy. J Med Chem 2023; 66:6218-6238. [PMID: 36880691 DOI: 10.1021/acs.jmedchem.2c02058] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Nowadays, small-molecule drugs have become an indispensable part of tumor immunotherapy. Accumulating evidence has indicated that specifically blocking PGE2/EP4 signaling to induce robust antitumor immune response represents an attractive immunotherapy strategy. Herein, a 2H-indazole-3-carboxamide containing compound 1 was identified as a EP4 antagonist hit by screening our in-house small-molecule library. Systematic structure-activity relationship exploration leads to the discovery of compound 14, which displayed single-nanomolar EP4 antagonistic activity in a panel of cell functional assays, high subtype selectivity, and favorable drug-like profiles. Moreover, compound 14 profoundly inhibited the up-regulation of multiple immunosuppression-related genes in macrophages. Oral administration of compound 14, either as monotherapy or in combination with an anti-PD-1 antibody, significantly impaired tumor growth via enhancing cytotoxic CD8+ T cell-mediated antitumor immunity in a syngeneic colon cancer model. Thus, these results demonstrate the potential of compound 14 as a candidate for developing novel EP4 antagonists for tumor immunotherapy.
Collapse
Affiliation(s)
- Zhiyuan Cheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yijie Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mengru Wang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Wei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yang Wang
- Department of Urology, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chunyong Ding
- Targeted Drug Research Center of Digestive Tract Tumor, Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyan Wu
- School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China.,School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
9
|
Lengerli D, Ibis K, Nural Y, Banoglu E. The 1,2,3-triazole 'all-in-one' ring system in drug discovery: a good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool. Expert Opin Drug Discov 2022; 17:1209-1236. [PMID: 36164263 DOI: 10.1080/17460441.2022.2129613] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The 1,2,3-triazole ring occupies an important space in medicinal chemistry due to its unique structural properties, synthetic versatility and pharmacological potential making it a critical scaffold. Since it is readily available through click chemistry for creating compound collections against various diseases, it has become an emerging area of interest for medicinal chemists. AREAS COVERED This review article addresses the unique properties of the1,2,3-triazole nucleus as an intriguing ring system in drug discovery while focusing on the most recent medicinal chemistry strategies exploited for the design and development of 1,2,3-triazole analogs as inhibitors of various biological targets. EXPERT OPINION Evidently, the 1,2,3-triazole ring with unique structural features has enormous potential in drug design against various diseases as a pharmacophore, a bioisoster or a structural platform. The most recent evidence indicates that it may be more emerging in drug molecules in near future along with an increasing understanding of its prominent roles in drug structures. The synthetic feasibility and versatility of triazole chemistry make it certainly ideal for creating compound libraries for more constructive structure-activity relationship studies. However, more comparative and target-specific studies are needed to gain a deeper understanding of the roles of the 1,2,3-triazole ring in molecular recognition.[Figure: see text].
Collapse
Affiliation(s)
- Deniz Lengerli
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Kübra Ibis
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Yahya Nural
- Department of Analytical Chemistry, Faculty of Pharmacy, Mersin University, Mersin, Turkey
| | - Erden Banoglu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
10
|
Computational Study of Some 4’-Aryl-1,2,4-triazol-1-ium-4-R2-phenacylid Derivatives in Vacuum and Dimethylformamide. Symmetry (Basel) 2022. [DOI: 10.3390/sym14102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four carbanion monosubstituted 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids, used as precursors in obtaining new heterocyclic compounds, and their corresponding derivatives belonging to the C2v point group of symmetry were studied by computational means in dimethylformamide (DMF) solutions compared with their isolated state. The changes in the computed parameters induced by the solvent compared with those of the isolated molecules were analyzed in this paper. The charge distribution and the molecular energies in the HOMO and LUMO, the electronic states responsible for the visible absorption band of 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids, in their isolated state and in solutions achieved in DMF were computed and compared with the visible electronic absorption spectra. The molecular descriptors of the studied compounds were computed, and the higher reactivity of the carbanion monosubstituted 4’-aryl-1,2,4-triazol-1-ium-4-R2-phenacylids compared with symmetric derivatives was established. The obtained results can help researchers to obtain new heterocycles with applications in the drug industry.
Collapse
|
11
|
Wang W, He J, Yang J, Zhang C, Cheng Z, Zhang Y, Zhang Q, Wang P, Tang S, Wang X, Liu M, Lu W, Zhang HK. Scaffold Hopping Strategy to Identify Prostanoid EP4 Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:7896-7917. [PMID: 35640059 DOI: 10.1021/acs.jmedchem.2c00448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cancer cells can effectively suppress the natural immune response in humans, and prostaglandin E2 (PGE2) is a key mediator in the development of tumor cell resistance to immunotherapy. As a major contributor to PGE2-elicited immunosuppressive activity, the EP4 receptor promotes tumor development and progression in the tumor microenvironment, and the development of selective and potent EP4 receptor antagonists should have promising potential for tumor immunotherapy. Aiming at improving the drug-like properties, a series of 4,7-dihydro-5H-thieno[2,3-c]pyran derivatives were designed and synthesized through a scaffold hopping strategy. The most promising compound 47 exhibited good EP4 antagonistic activity and excellent subtype selectivity, as well as favorable drug-like properties. It effectively suppressed the expression of multiple immunosuppression-related genes in macrophages. Meanwhile, oral administration of compound 47, alone or in combination with anti-PD-1 antibody, significantly enhanced the antitumor immune response and inhibited tumor growth in the mouse CT26 colon carcinoma model.
Collapse
Affiliation(s)
- Wei Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Jiacheng He
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Junjie Yang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Chan Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Zhiyuan Cheng
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yao Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiansen Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Peili Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Shuowen Tang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xin Wang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Weiqiang Lu
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Han-Kun Zhang
- Drug Discovery Unit, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
12
|
Matin MM, Matin P, Rahman MR, Ben Hadda T, Almalki FA, Mahmud S, Ghoneim MM, Alruwaily M, Alshehri S. Triazoles and Their Derivatives: Chemistry, Synthesis, and Therapeutic Applications. Front Mol Biosci 2022; 9:864286. [PMID: 35547394 PMCID: PMC9081720 DOI: 10.3389/fmolb.2022.864286] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Among the nitrogen-containing heterocyclic compounds, triazoles emerge with superior pharmacological applications. Structurally, there are two types of five-membered triazoles: 1,2,3-triazole and 1,2,4-triazole. Due to the structural characteristics, both 1,2,3- and 1,2,4-triazoles are able to accommodate a broad range of substituents (electrophiles and nucleophiles) around the core structures and pave the way for the construction of diverse novel bioactive molecules. Both the triazoles and their derivatives have significant biological properties including antimicrobial, antiviral, antitubercular, anticancer, anticonvulsant, analgesic, antioxidant, anti-inflammatory, and antidepressant activities. These are also important in organocatalysis, agrochemicals, and materials science. Thus, they have a broad range of therapeutic applications with ever-widening future scope across scientific disciplines. However, adverse events such as hepatotoxicity and hormonal problems lead to a careful revision of the azole family to obtain higher efficacy with minimum side effects. This review focuses on the structural features, synthesis, and notable therapeutic applications of triazoles and related compounds.
Collapse
Affiliation(s)
- Mohammed M. Matin
- Bioorganic and Medicinal Chemistry Laboratory, Faculty of Science, Department of Chemistry, University of Chittagong, Hathajari, Chittagong, Bangladesh
- *Correspondence: Mohammed M. Matin ,
| | - Priyanka Matin
- Bioorganic and Medicinal Chemistry Laboratory, Faculty of Science, Department of Chemistry, University of Chittagong, Hathajari, Chittagong, Bangladesh
| | - Md. Rezaur Rahman
- Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Kuching, Malaysia
| | - Taibi Ben Hadda
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Faisal A. Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafi Mahmud
- Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Maha Alruwaily
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Jiang W, Jin Y, Zhang S, Ding Y, Huo K, Yang J, Zhao L, Nian B, Zhong TP, Lu W, Zhang H, Cao X, Shah KM, Wang N, Liu M, Luo J. PGE2 activates EP4 in subchondral bone osteoclasts to regulate osteoarthritis. Bone Res 2022; 10:27. [PMID: 35260562 PMCID: PMC8904489 DOI: 10.1038/s41413-022-00201-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
Prostaglandin E2 (PGE2), a major cyclooxygenase-2 (COX-2) product, is highly secreted by the osteoblast lineage in the subchondral bone tissue of osteoarthritis (OA) patients. However, NSAIDs, including COX-2 inhibitors, have severe side effects during OA treatment. Therefore, the identification of novel drug targets of PGE2 signaling in OA progression is urgently needed. Osteoclasts play a critical role in subchondral bone homeostasis and OA-related pain. However, the mechanisms by which PGE2 regulates osteoclast function and subsequently subchondral bone homeostasis are largely unknown. Here, we show that PGE2 acts via EP4 receptors on osteoclasts during the progression of OA and OA-related pain. Our data show that while PGE2 mediates migration and osteoclastogenesis via its EP2 and EP4 receptors, tissue-specific knockout of only the EP4 receptor in osteoclasts (EP4LysM) reduced disease progression and osteophyte formation in a murine model of OA. Furthermore, OA-related pain was alleviated in the EP4LysM mice, with reduced Netrin-1 secretion and CGRP-positive sensory innervation of the subchondral bone. The expression of platelet-derived growth factor-BB (PDGF-BB) was also lower in the EP4LysM mice, which resulted in reduced type H blood vessel formation in subchondral bone. Importantly, we identified a novel potent EP4 antagonist, HL-43, which showed in vitro and in vivo effects consistent with those observed in the EP4LysM mice. Finally, we showed that the Gαs/PI3K/AKT/MAPK signaling pathway is downstream of EP4 activation via PGE2 in osteoclasts. Together, our data demonstrate that PGE2/EP4 signaling in osteoclasts mediates angiogenesis and sensory neuron innervation in subchondral bone, promoting OA progression and pain, and that inhibition of EP4 with HL-43 has therapeutic potential in OA.
Collapse
Affiliation(s)
- Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Shiwei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Yi Ding
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Konglin Huo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Junjie Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Lei Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Baoning Nian
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China
| | - Jian Luo
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, PR China. .,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, PR China.
| |
Collapse
|
14
|
Jin Y, Liu Q, Chen P, Zhao S, Jiang W, Wang F, Li P, Zhang Y, Lu W, Zhong TP, Ma X, Wang X, Gartland A, Wang N, Shah KM, Zhang H, Cao X, Yang L, Liu M, Luo J. A novel prostaglandin E receptor 4 (EP4) small molecule antagonist induces articular cartilage regeneration. Cell Discov 2022; 8:24. [PMID: 35256606 PMCID: PMC8901748 DOI: 10.1038/s41421-022-00382-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023] Open
Abstract
Articular cartilage repair and regeneration is an unmet clinical need because of the poor self-regeneration capacity of the tissue. In this study, we found that the expression of prostaglandin E receptor 4 (PTGER4 or EP4) was largely increased in the injured articular cartilage in both humans and mice. In microfracture (MF) surgery-induced cartilage defect (CD) and destabilization of the medial meniscus (DMM) surgery-induced CD mouse models, cartilage-specific deletion of EP4 remarkably promoted tissue regeneration by enhancing chondrogenesis and cartilage anabolism, and suppressing cartilage catabolism and hypertrophy. Importantly, knocking out EP4 in cartilage enhanced stable mature articular cartilage formation instead of fibrocartilage, and reduced joint pain. In addition, we identified a novel selective EP4 antagonist HL-43 for promoting chondrocyte differentiation and anabolism with low toxicity and desirable bioavailability. HL-43 enhanced cartilage anabolism, suppressed catabolism, prevented fibrocartilage formation, and reduced joint pain in multiple pre-clinical animal models including the MF surgery-induced CD rat model, the DMM surgery-induced CD mouse model, and an aging-induced CD mouse model. Furthermore, HL-43 promoted chondrocyte differentiation and extracellular matrix (ECM) generation, and inhibited matrix degradation in human articular cartilage explants. At the molecular level, we found that HL-43/EP4 regulated cartilage anabolism through the cAMP/PKA/CREB/Sox9 signaling. Together, our findings demonstrate that EP4 can act as a promising therapeutic target for cartilage regeneration and the novel EP4 antagonist HL-43 has the clinical potential to be used for cartilage repair and regeneration.
Collapse
Affiliation(s)
- Yunyun Jin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Qianqian Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Peng Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Siyuan Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenhao Jiang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Fanhua Wang
- Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China
| | - Peng Li
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Yuanjin Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Karan Mehul Shah
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Hankun Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xu Cao
- Departments of Orthopaedic Surgery and Biomedical Engineering and Institute of Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Yang
- Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.,Center for Health Science and Engineering, School of Materials Science and Engineering, Hebei University of Technology, Tianjin, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Luo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China. .,Yangzhi Rehabilitation Hospital (Sunshine Rehabilitation Centre), Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Yu F, Zhu C, Ze S, Wang H, Yang X, Liu M, Xie Q, Lu W, Wang Y. Design, Synthesis, and Bioevaluation of 2-Aminopteridin-7(8 H)-one Derivatives as Novel Potent Adenosine A 2A Receptor Antagonists for Cancer Immunotherapy. J Med Chem 2022; 65:4367-4386. [PMID: 35212542 DOI: 10.1021/acs.jmedchem.1c02199] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In recent years, the adenosine A2A receptor (A2AR) has shown exciting progress in the development of immunotherapies for the treatment of cancer. Herein, a 2-amino-7,9-dihydro-8H-purin-8-one compound (1) was identified as an A2AR antagonist hit through in-house library screening. Extensive structure-activity relationship (SAR) studies led to the discovery of 2-aminopteridin-7(8H)-one derivatives, which showed high potencies on A2AR in the cAMP assay. Compound 57 stood out with an IC50 value of 8.3 ± 0.4 nM against A2AR at the 5'-N-ethylcarboxamidoadenosine (NECA) level of 40 nM. The antagonistic effect of 57 was sustained even at a higher NECA concentration of 1 μM, which mimicked the adenosine level in the tumor microenvironment (TME). Importantly, 57 enhanced T cell activation in both the IL-2 production assay and the cancer-cell-killing model, thus demonstrating its potential as a lead for developing novel A2AR antagonists in cancer immunotherapy.
Collapse
Affiliation(s)
- Fazhi Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Chenyu Zhu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Shuyin Ze
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Haojie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xinyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Mingyao Liu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Qiong Xie
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.,Fudan Zhangjiang Institute, 666 Zhangheng Road, Shanghai 201203, China
| | - Weiqiang Lu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Yonghui Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| |
Collapse
|
16
|
A Novel Small Molecular Prostaglandin Receptor EP4 Antagonist, L001, Suppresses Pancreatic Cancer Metastasis. Molecules 2022; 27:molecules27041209. [PMID: 35208999 PMCID: PMC8879074 DOI: 10.3390/molecules27041209] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 01/30/2023] Open
Abstract
Metastatic pancreatic cancer remains a major clinical challenge, emphasizing the urgent need for the exploitation of novel therapeutic approaches with superior response. In this study, we demonstrate that the aberrant activation of prostaglandin E2 (PGE2) receptor 4 (EP4) is a pro-metastatic signal in pancreatic cancer. To explore the therapeutic role of EP4 signaling, we developed a potent and selective EP4 antagonist L001 with single-nanomolar activity using a panel of cell functional assays. EP4 antagonism by L001 effectively repressed PGE2-elicited cell migration and the invasion of pancreatic cancer cells in a dose-dependent manner. Importantly, L001 alone or combined with the chemotherapy drug gemcitabine exhibited remarkably anti-metastasis activity in a pancreatic cancer hepatic metastasis model with excellent tolerability and safety. Mechanistically, EP4 blockade by L001 abrogated Yes-associated protein 1 (YAP)-driven pro-metastatic factor expression in pancreatic cancer cells. The suppression of YAP’s activity was also observed upon L001 treatment in vivo. Together, these findings support the notions that EP4–YAP signaling axis is a vital pro-metastatic pathway in pancreatic cancer and that EP4 inhibition with L001 may deliver a therapeutic benefit for patients with metastatic pancreatic cancer.
Collapse
|
17
|
Caiana RRA, Santos CS, de Oliveira RN, Freitas JCR. Scientific and Technological Prospecting of 1H-1,2,3-Triazoles. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220126153429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The use of 1H-1,2,3-triazoles has become an important scaffold for applications in different technological sectors. Therefore, we sought to carry out a technological monitoring to understand the international scenario involving 1H-1,2,3-triazoles from the patents filed, in addition to evaluating the relationship between the growth in the number of patents and the improvement of strategies for obtaining of these compounds via a metal-catalyzed azide-alkyne cycloaddition reaction. Technological monitoring was performed with the support of the PatentInspiration® platform, using the keywords "1,2,3-triazol", "1,2,3-triazole", and "1,2,3-triazolyl". A total of 960 registered patents were found, most for the years 2014 and 2019. The main filers were prestigious multinational companies such as Syngenta, Merck, Sandoz, Pfizer, and Bayer. The United States, China, Japan, and Germany lead patent registrations, mainly addressing innovations in chemistry and metallurgy, human needs, and new technologies. These results help to understand the state of innovation for this topic, pointing out the characteristics of the main discoveries concerning 1H-1,2,3-triazole derivatives.
Collapse
Affiliation(s)
| | - Cosme Silva Santos
- Department of Chemistry, Federal Rural University of Pernambuco, 52171-900, Recife-PE, Brazil
| | | | | |
Collapse
|
18
|
Chen L, Yan G, Ohwada T. Building on endogenous lipid mediators to design synthetic receptor ligands. Eur J Med Chem 2022; 231:114154. [DOI: 10.1016/j.ejmech.2022.114154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 01/05/2023]
|
19
|
Wang Q, Morris RJ, Bode AM, Zhang T. Prostaglandin Pathways: Opportunities for Cancer Prevention and Therapy. Cancer Res 2021; 82:949-965. [PMID: 34949672 DOI: 10.1158/0008-5472.can-21-2297] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022]
Abstract
Because of profound effects observed in carcinogenesis, prostaglandins (PGs), prostaglandin-endoperoxide synthases, and PG receptors are implicated in cancer development and progression. Understanding the molecular mechanisms of PG actions has potential clinical relevance for cancer prevention and therapy. This review focuses on the current status of PG signaling pathways in modulating cancer progression and aims to provide insights into the mechanistic actions of PGs and their receptors in influencing tumor progression. We also examine several small molecules identified as having anticancer activity that target prostaglandin receptors. The literature suggests that targeting PG pathways could provide opportunities for cancer prevention and therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota
| | | | - Ann M Bode
- The Hormel Institute, University of Minnesota
| | | |
Collapse
|
20
|
Wang D, Cabalag CS, Clemons NJ, DuBois RN. Cyclooxygenases and Prostaglandins in Tumor Immunology and Microenvironment of Gastrointestinal Cancer. Gastroenterology 2021; 161:1813-1829. [PMID: 34606846 DOI: 10.1053/j.gastro.2021.09.059] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Chronic inflammation is a known risk factor for gastrointestinal cancer. The evidence that nonsteroidal anti-inflammatory drugs suppress the incidence, growth, and metastasis of gastrointestinal cancer supports the concept that a nonsteroidal anti-inflammatory drug target, cyclooxygenase, and its downstream bioactive lipid products may provide one of the links between inflammation and cancer. Preclinical studies have demonstrated that the cyclooxygenase-2-prostaglandin E2 pathway can promote gastrointestinal cancer development. Although the role of this pathway in cancer has been investigated extensively for 2 decades, only recent studies have described its effects on host defenses against transformed epithelial cells. Overcoming tumor-immune evasion remains one of the major challenges in cancer immunotherapy. This review summarizes the impacts of the cyclooxygenase-2-prostaglandin E2 pathway on gastrointestinal cancer development. Our focus was to highlight recent advances in our understanding of how this pathway induces tumor immune evasion.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Carlos S Cabalag
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Clemons
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
21
|
El Abbouchi A, El Brahmi N, Hiebel MA, Bignon J, Guillaumet G, Suzenet F, El Kazzouli S. Synthesis and evaluation of a novel class of ethacrynic acid derivatives containing triazoles as potent anticancer agents. Bioorg Chem 2021; 115:105293. [PMID: 34426162 DOI: 10.1016/j.bioorg.2021.105293] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/03/2021] [Accepted: 08/17/2021] [Indexed: 12/30/2022]
Abstract
For unmet clinical needs, a novel class of ethacrynic acid (EA) derivatives containing triazole moieties (3a-i and 8) were designed, synthesized and evaluated as new anticancer agents. The in vitro anti-proliferative activities were assessed first on HL60 cell line and in a second stage, the two selected compounds 3a and 3c were tested on a panel of human cancer cell lines (A549, MCF7, PC3, U87-MG, SKOV3 and HCT116) and on a normal cell line (MCR5). Compound3c exhibited very good antitumor activities with IC50 values of 20.2, 56.5 and 76.8 nM against A549, PC3 and U87-MG cell lines respectively, which is 2.8- and 1.3-fold more active than doxorubicin on A549 and U87-MG cancer cells, respectively. In addition, compound 3c displays a very good safety index (SI) of 82 fold for A549. Compound 3a showed also good IC50 values of 50 nM on both A549 and PC3 cells and lower selectivity compared to 3c for A549 and PC3 vs. MCR5 with SI of 33 and 18 fold, respectively. The measurement of mitochondrial membrane potential on HCT116 cells after treatments by either 3a or 3c showed that both compounds induced mitochondrial dysfunctions causing thus caspase-induced apoptosis.
Collapse
Affiliation(s)
- Abdelmoula El Abbouchi
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France
| | - Nabil El Brahmi
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco
| | - Marie-Aude Hiebel
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France
| | - Jérôme Bignon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Gérald Guillaumet
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco; Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France.
| | - Franck Suzenet
- Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, BP 6759, Orléans cedex 2 54067, France.
| | - Saïd El Kazzouli
- Euromed Research Center, Engineering School of Biomedical and Biotechnology, Euromed University of Fes (UEMF)-Route de Meknès, 30000 Fez, Morocco.
| |
Collapse
|
22
|
Panish R, Thieu T, Balsells J. Copper-Catalyzed Synthesis of 5-Carboxyl-4-perfluoroalkyl Triazoles. Org Lett 2021; 23:5937-5941. [PMID: 34286985 DOI: 10.1021/acs.orglett.1c02037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A facile, scalable synthesis of previously inaccessible trifluoromethyl and perfluoroalkyl triazoles is disclosed. Mediated by copper, this catalytic protocol enables access to 4-perfluoroalkyl triazoles from commodity chemicals. A catalytic Cu(II) system wherein copper serves two roles (generation of N-tosyl-2-vinyldiazenes and N-N bond formation) allows for rapid assembly of 5-carboxyl-4-perfluoroalkyl-triazoles from N-tosylhydrazide and perfluoroalkyl acetoacetates. Ethyl 4,4,4-trifluoro-3-(2-tosylhydrazineylidene)butanoate, a previously unknown air and bench stable reagent for access to CF3-triazoles, was developed to enable this chemistry. This led to the identification of a series of crystalline hydrazone reagents that could be used as templates to construct an array of triazoles. Hydrolysis and decarboxylation parlay this approach into a means to access 5-H-4-CF3-triazoles. The approach exhibits high functional group tolerance and can be executed on a multigram scale.
Collapse
Affiliation(s)
- Robert Panish
- Discovery Process Research, Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Tho Thieu
- Discovery Chemistry, Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Jaume Balsells
- Discovery Process Research, Janssen R&D, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
23
|
Tojo T, Kubo Y, Kondo T, Yuasa M. Inverted Positioning of DNMT1 Inhibitor in the Active Site of DNMT1 Caused by Hydrophobicity/Hydrophilicity of the Terminal Structure. HETEROCYCLES 2021. [DOI: 10.3987/com-21-14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Wang DP, Liu KL, Li XY, Lu GQ, Xue WH, Qian XH, Mohamed O K, Meng FH. Design, synthesis, and in vitro and in vivo anti-angiogenesis study of a novel vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor based on 1,2,3-triazole scaffold. Eur J Med Chem 2020; 211:113083. [PMID: 33340911 DOI: 10.1016/j.ejmech.2020.113083] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 01/08/2023]
Abstract
In the past five years, our team had been committed to click chemistry research, exploring the biological activity of 1,2,3-triazole by synthesizing different target inhibitors. In this study, a series of novel indole-2-one derivatives based on 1,2,3-triazole scaffolds were synthesized for the first time, and their inhibitory activity on vascular endothelial growth factor receptor-2 (VEGFR-2) was tested. Most of the compounds had shown promising activity in the VEGFR-2 kinase assay and had low toxicity to human umbilical vein endothelial cells (HUVECs). The compound 13d (IC50 = 26.38 nM) had better kinase activity inhibition ability than sunitinib (IC50 = 83.20 nM) and was less toxic to HUVECs. Moreover, it had an excellent inhibitory effect on HT-29 and MKN-45 cells. On the one hand, by tube formation assay, transwell, and Western blot analysis, compound 13d could inhibit VEGFR-2 protein phosphorylate on HUVECs, thereby inhibiting HUVECs migration and tube formation. In vivo study, the zebrafish model with VEGFR-2 labeling also verified that compound 13d had more anti-angiogenesis ability than sunitinib. On the other hand, molecular docking and molecular dynamics (MD) simulation results showed that compound 13d could stably bind to the active site of VEGFR-2. Based on the above findings, compound 13d could be considered an effective anti-angiogenesis drug and has more development value than sunitinib.
Collapse
Affiliation(s)
- De-Pu Wang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kai-Li Liu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin-Yang Li
- School of Pharmacy, China Medical University, Shenyang, 110122, China; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Guo-Qing Lu
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Wen-Han Xue
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Xin-Hua Qian
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Kamara Mohamed O
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
25
|
Surendra Reddy G, Anebouselvy K, Ramachary DB. [3+2]‐Cycloaddition for Fully Decorated Vinyl‐1,2,3‐Triazoles: Design, Synthesis and Applications. Chem Asian J 2020; 15:2960-2983. [DOI: 10.1002/asia.202000731] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Indexed: 02/06/2023]
Affiliation(s)
- G. Surendra Reddy
- Catalysis Laboratory School of Chemistry University of Hyderabad Hyderabad 500 046 India
| | - K. Anebouselvy
- Catalysis Laboratory School of Chemistry University of Hyderabad Hyderabad 500 046 India
| | | |
Collapse
|
26
|
Surendra Reddy G, Suresh Kumar A, Ramachary DB. Organocatalytic enone-azide [3 + 2]-cycloaddition: synthesis of functionally rich C/N-double vinyl 1,2,3-triazoles. Org Biomol Chem 2020; 18:4470-4478. [PMID: 32490474 DOI: 10.1039/d0ob00848f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
An enolate-mediated organocatalytic [3 + 2]-cycloaddition of enones with less reactive vinyl/alkyl/aryl azides is reported at room temperature for short reaction times. The metal-free amine-mediated catalytic conditions of this [3 + 2]-cycloaddition allowed us to synthesize a collection of C/N-double vinyl-1,2,3-triazoles and C-vinyl-1,2,3-triazoles through functionalized enones as quality azidophiles with various azides. It is an efficient catalytic [3 + 2]-cycloaddition for the synthesis of biologically important fully decorated C/N-double vinyl-1,2,3-triazoles with excellent outcomes with reference to the reaction rate, selectivity, operation simplicity, substrate scope, yields, and synthetic applications as demonstrated in the paper. Herein, we illustrated the importance of enolate reactivity with azides compared to enamines by correlation with previous enamine-mediated click reactions in the reaction mechanism section.
Collapse
Affiliation(s)
- G Surendra Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - A Suresh Kumar
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | | |
Collapse
|
27
|
Kim Y, Kanemoto K, Shimomori K, Hosoya T, Yoshida S. Functionalization of a Single C-F Bond of Trifluoromethylarenes Assisted by an ortho-Silyl Group Using a Trityl-Based All-in-One Reagent with Ytterbium Triflate Catalyst. Chemistry 2020; 26:6136-6140. [PMID: 32185819 DOI: 10.1002/chem.202001315] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Catalytic thiolation and azidation of a single C-F bond of trifluoromethylarenes were achieved assisted by an ortho-silyl group with all-in-one reagents to generate a trityl cation and nucleophiles. The reactions catalyzed by ytterbium triflate efficiently afforded a wide variety of difluoromethylenes avoiding the further C-F bond cleavage, by virtue of the mild conditions without the generation of a Brønsted acid.
Collapse
Affiliation(s)
- Youngchan Kim
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Kazuya Kanemoto
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Ken Shimomori
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
28
|
Espitia Cogollo E, Piro OE, Echeverría GA, Tuttolomondo ME, Pérez H, Jios JL, Ulic SE. Hydrogen bonding interactions in fluorinated 1,2,3-triazole derivatives. NEW J CHEM 2020. [DOI: 10.1039/d0nj02914a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Comprehensive theoretical, structural and spectroscopic investigations on new substituted 1,2,3-triazoles in the solid state.
Collapse
Affiliation(s)
- E. Espitia Cogollo
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- (1900) La Plata
- Argentina
| | - O. E. Piro
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- (1900) La Plata
- Argentina
| | - G. A. Echeverría
- Departamento de Física
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata e IFLP (CONICET, CCT-La Plata)
- (1900) La Plata
- Argentina
| | - M. E. Tuttolomondo
- INQUINOA-CONICET
- Instituto de Química Física
- Facultad de Bioquímica
- Química y Farmacia
- Universidad Nacional de Tucumán
| | - H. Pérez
- Departamento de Química Inorgánica
- Facultad de Química
- Universidad de La Habana
- La Habana 10400
- Cuba
| | - J. L. Jios
- Laboratorio UPL (UNLP-CIC)
- Campus Tecnológico Gonnet (CIC-BA)
- (1897) Gonnet
- Argentina
- Departamento de Química
| | - S. E. Ulic
- CEQUINOR (CONICET-UNLP)
- Facultad de Ciencias Exactas
- Universidad Nacional de La Plata
- (1900) La Plata
- Argentina
| |
Collapse
|