1
|
Niu G, Wang X, Li J. Leucinostatins target Plasmodium mitochondria to block malaria transmission. Parasit Vectors 2024; 17:524. [PMID: 39707527 DOI: 10.1186/s13071-024-06608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Malaria remains a critical disease. Leucinostatins from the fungus Purpureocillium lilacinum inhibited the transmission of Plasmodium falciparum to mosquitoes via contact. METHODS Here, we modified the leucinostatin B (LB) C-terminus to make derivatives and examined their inhibition against malaria transmission to mosquitoes. Fluorescence-labeled leucinostatins were incubated with intact gametocytes and were examined under microscopy to detect the targets of leucinostatins. We also analyzed leucinostatins' general cytotoxicity and hemolysis. RESULTS The results showed that the derivatives with -H, -CH3, -Atto495, and -Biotin at C-terminus had EC50 of 1.5 nM, 0.2 nM, 4.2 nM, and 42 nM, respectively. Atto495 and biotin are similar in size and much bigger than -CH3 and -H. Based on reverse-phase HPLC elution time, we found that LB-Biotin had much higher hydrophobicity than the others, consistent with its lowest malaria transmission-blocking activity. Fluorescence microscopy showed that LB-Atto495 colocalized with mitochondria inside intact P. falciparum gametocytes. We found that leucinostatin A significantly inhibited the proliferation of human nucleated cells with IC50 around 47 nM and it did not lyse erythrocytes at 100 μM. CONCLUSIONS We conclude that the leucinostatins pass through the cytoplasmic membrane without lysing cells and interact with molecules specifically in mitochondria. Therefore, leucinostatins should be ideal inhibitors against mobile parasites, such as ookinetes and sporozoites, during malaria transmission.
Collapse
Affiliation(s)
- Guodong Niu
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| | - Jun Li
- Department of Biological Sciences, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA.
| |
Collapse
|
2
|
Chen K, Wu Y, Xu L, Wang C, Xue J. Identification of the metabolic protein ATP5MF as a potential therapeutic target of TNBC. J Transl Med 2024; 22:932. [PMID: 39402579 PMCID: PMC11472516 DOI: 10.1186/s12967-024-05692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), a distinct subtype of breast cancer, is characterized by its high invasiveness, high metastatic potential, proneness to relapse, and poor prognosis. Effective treatment regimens for non-BRCA1/2 mutation TNBC are still lacking. As a result, there is a pressing clinical necessity to develop novel treatment approaches for non-BRCA1/2 mutation TNBC. METHODS For this research, the scRNA data was obtained from the GEO database, while the transcriptome data was obtained from the TCGA and METABRIC databases. Quality control procedures were conducted on single-cell sequencing data. and then annotation and the Copycat algorithm were applied for anlysis. Employing the high dimensional weighted gene coexpression network analysis (hdWGCNA) method, we analyzed the tumor epithelial cells from non-BRCA1/2 mutation TNBC to identify the functional module genes. PPI analysis and survival analysis were further emplyed to identify the key gene. siRNA-NC and siRNA-ATP5MF were transfected into two MDA-MB-231 and BT-549 TNBC cell lines. Cell growth was determined by CCK8 assay, colony formation and migration assay. Electron microscopy was used to examine the structure of mitochondria in cells. JC-1 staining was used to measure the potential of the mitochondrial membrane. A tumor xenograft animal model was established by injecting TNBC cells into nude mice. The animal model was usded to evaluated in vivo tumor response aftering ATP5MF silencing. RESULTS Using hdWGCNA, we have identified 136 genes in module 3. After PPI and survival analysis, we have identified ATP5MF as a potential therapeutic gene. High ATP5MF expression was associated with poor prognosis of non-BRCA1/2 mutation TNBC. The high expression of ATP5MF in TNBC tissues was evaluated using the TCGA database and IHC staining of clinical TNBC specimens. Silencing ATP5MF in two TNBC cell lines reduced the growth and colony formation of TNBC cells in vitro, and hindered the growth of TNBC xenografts in vivo. Additionally, ATP5MF knockdown impaired mitochondrial functions in TNBC cells. CONCLUSION In summary, the metabolic protein ATP5MF plays a crucial role in the non-BRCA1/2 mutation TNBC cells, making it a potential novel diagnostic and therapeutic oncotarget for non-BRCA1/2 mutation TNBC.
Collapse
Affiliation(s)
- Kaiyan Chen
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
- The Graduate School of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yingchun Wu
- Ultrasonic Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Linfeng Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Changyong Wang
- Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Jinqiu Xue
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
3
|
Li Z, Jiao Y, Ling J, Zhao J, Yang Y, Mao Z, Zhou K, Wang W, Xie B, Li Y. Characterization of a methyltransferase for iterative N-methylation at the leucinostatin termini in Purpureocillium lilacinum. Commun Biol 2024; 7:757. [PMID: 38909167 PMCID: PMC11193748 DOI: 10.1038/s42003-024-06467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 06/18/2024] [Indexed: 06/24/2024] Open
Abstract
N-methyltransferase (NMT)-catalyzed methylation at the termini of nonribosomal peptides (NRPs) has rarely been reported. Here, we discover a fungal NMT LcsG for the iterative terminal N-methylation of a family of NRPs, leucinostatins. Gene deletion results suggest that LcsG is essential for leucinostatins methylation. Results from in vitro assays and HRESI-MS-MS analysis reveal the methylation sites as NH2, NHCH3 and N(CH3)2 in the C-terminus of various leucinostatins. LcsG catalysis yields new lipopeptides, some of which demonstrate effective antibiotic properties against the human pathogen Cryptococcus neoformans and the plant pathogen Phytophthora infestans. Multiple sequence alignments and site-directed mutagenesis of LcsG indicate the presence of a highly conserved SAM-binding pocket, along with two possible active site residues (D368 and D395). Molecular dynamics simulations show that the targeted N can dock between these two residues. Thus, this study suggests a method for increasing the variety of natural bioactivity of NPRs and a possible catalytic mechanism underlying the N-methylation of NRPs.
Collapse
Affiliation(s)
- Zixin Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux, Belgium
| | - Yang Jiao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jian Ling
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Jianlong Zhao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Yuhong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Zhenchuan Mao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Bingyan Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| | - Yan Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081, Beijing, China.
| |
Collapse
|
4
|
Lu Y, Tang D, Liu Z, Zhao J, Chen Y, Ma J, Luo L, Yu H. Genomic comparative analysis of Ophiocordyceps unilateralis sensu lato. Front Microbiol 2024; 15:1293077. [PMID: 38686108 PMCID: PMC11057048 DOI: 10.3389/fmicb.2024.1293077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/16/2024] [Indexed: 05/02/2024] Open
Abstract
Ophiocordyceps unilateralis sensu lato is a common pathogenic fungus of ants. A new species, O. fusiformispora, was described based on morphology and phylogenetic evidence from five genes (SSU, LSU, TEF1α, RPB1, and RPB2). The whole genomes of O. fusiformispora, O. contiispora, O. subtiliphialida, O. satoi, O. flabellata, O. acroasca, and O. camponoti-leonardi were sequenced and annotated and compared with whole genome sequences of other species in O. unilateralis sensu lato. The basic genome-wide characteristics of the 12 species showed that the related species had similar GC content and genome size. AntiSMASH and local BLAST analyses revealed that the number and types of putative SM BGCs, NPPS, PKS, and hybrid PKS-NRPS domains for the 12 species differed significantly among different species in the same genus. The putative BGC of five compounds, namely, NG-391, lucilactaene, higginsianin B, pyripyropene A, and pyranonigrin E were excavated. NG-391 and lucilactaene were 7-desmethyl analogs of fusarin C. Furthermore, the 12 genomes had common domains, such as KS-AT-DH-MT-ER-KR-ACP and SAT-KS-AT-PT-ACP-ACP-Te. The ML and BI trees of SAT-KS-AT-PT-ACP-ACP-Te were highly consistent with the multigene phylogenetic tree in the 12 species. This study provided a method to obtain the living culture of O. unilateralis sensu lato species and its asexual formed on the basis of living culture, which was of great value for further study of O. unilateralis sensu lato species in the future, and also laid a foundation for further analysis of secondary metabolites of O. unilateralis sensu lato.
Collapse
Affiliation(s)
- Yingling Lu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Dexiang Tang
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Zuoheng Liu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Jing Zhao
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Yue Chen
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Jinmei Ma
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Lijun Luo
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Hong Yu
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Tehan RM, Dooley CB, Barge EG, McPhail KL, Spatafora JW. New species and new combinations in the genus Paraisaria (Hypocreales, Ophiocordycipitaceae) from the U.S.A., supported by polyphasic analysis. MycoKeys 2023; 100:69-94. [PMID: 38025585 PMCID: PMC10660154 DOI: 10.3897/mycokeys.100.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular phylogenetic and chemical analyses, and morphological characterization of collections of North American Paraisaria specimens support the description of two new species and two new combinations for known species. P.cascadensissp. nov. is a pathogen of Cyphoderris (Orthoptera) from the Pacific Northwest USA and P.pseudoheteropodasp. nov. is a pathogen of cicadae (Hemiptera) from the Southeast USA. New combinations are made for Ophiocordycepsinsignis and O.monticola based on morphological, ecological, and chemical study. A new cyclopeptide family proved indispensable in providing chemotaxonomic markers for resolving species in degraded herbarium specimens for which DNA sequencing is intractable. This approach enabled the critical linkage of a 142-year-old type specimen to a phylogenetic clade. The diversity of Paraisaria in North America and the utility of chemotaxonomy for the genus are discussed.
Collapse
Affiliation(s)
- Richard M. Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Chemistry and Biochemistry, Utica University, Utica, New York 13502, USA
| | - Connor B. Dooley
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | - Edward G. Barge
- Department of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | - Joseph W. Spatafora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
6
|
Mitra S, Rauf A, Sutradhar H, Sadaf S, Hossain MJ, Soma MA, Emran TB, Ahmad B, Aljohani ASM, Al Abdulmonem W, Thiruvengadam M. Potential candidates from marine and terrestrial resources targeting mitochondrial inhibition: Insights from the molecular approach. Comp Biochem Physiol C Toxicol Pharmacol 2023; 264:109509. [PMID: 36368509 DOI: 10.1016/j.cbpc.2022.109509] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/21/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are the target sites for multiple disease manifestations, for which it is appealing to researchers' attention for advanced pharmacological interventions. Mitochondrial inhibitors from natural sources are of therapeutic interest due to their promising benefits on physiological complications. Mitochondrial complexes I, II, III, IV, and V are the most common sites for the induction of inhibition by drug candidates, henceforth alleviating the manifestations, prevalence, as well as severity of diseases. Though there are few therapeutic options currently available on the market. However, it is crucial to develop new candidates from natural resources, as mitochondria-targeting abnormalities are rising to a greater extent. Marine and terrestrial sources possess plenty of bioactive compounds that are appeared to be effective in this regard. Ample research investigations have been performed to appraise the potentiality of these compounds in terms of mitochondrial disorders. So, this review outlines the role of terrestrial and marine-derived compounds in mitochondrial inhibition as well as their clinical status too. Additionally, mitochondrial regulation and, therefore, the significance of mitochondrial inhibition by terrestrial and marine-derived compounds in drug discovery are also discussed.
Collapse
Affiliation(s)
- Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Swabi 23430, Khyber Pakhtunkhwa (KP), Pakistan.
| | - Hriday Sutradhar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Samia Sadaf
- Department of Genetic Engineering and Biotechnology, University of Chittagong, Chittagong 4331, Bangladesh
| | - Md Jamal Hossain
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Mahfuza Afroz Soma
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road Dhanmondi, Dhaka 1205, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Bashir Ahmad
- Institute of Biotechnology & Microbiology, Bacha Khan University, Charsadda, KP, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea; Saveetha Dental College and Hospital, Saveetha Institute of Medical Technical Sciences, Chennai 600077, Tamil Nadu, India.
| |
Collapse
|
7
|
Thilagavathi R, Priyankha S, Kannan M, Prakash M, Selvam C. Compounds from diverse natural origin against triple-negative breast cancer: A comprehensive review. Chem Biol Drug Des 2023; 101:218-243. [PMID: 36323650 DOI: 10.1111/cbdd.14172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/05/2022]
Abstract
Triple-negative breast cancer (TNBC) is caused due to the lack of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor 2 (HER2) expression. Triple-negative breast cancer is the most aggressive heterogeneous disease that is capable of producing different clones and mutations. Tumorigenesis in TNBC is caused due to the mutation or overexpression of tumor suppressor genes. It is also associated with mutations in the BRCA gene which is linked to hereditary breast cancer. In addition, PARP proteins and checkpoint proteins also play a crucial function in causing TNBC. Many cell signaling pathways are dysregulated in TNBC. Even though chemotherapy and immunotherapy are good options for TNBC treatment, the response rates are still low in general. Many phytochemicals that are derived from natural compounds have shown very good inhibitions for TNBC. Natural compounds have the great advantage of being less toxic, having lesser side effects, and being easily available. The secondary metabolites such as alkaloids, terpenoids, steroids, and flavonoids in natural products make them promising inhibitors of TNBC. Their compositions also offer vital insights into inhibitory action, which could lead to new cancer-fighting strategies. This review can help in understanding how naturally occurring substances and medicinal herbs decrease specific tumors and pave the way for the development of novel and extremely efficient antitumor therapies.
Collapse
Affiliation(s)
- Ramasamy Thilagavathi
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Sridhar Priyankha
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Manivel Kannan
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, India
| | - Muthuramalingam Prakash
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Chengalpattu, India
| | - Chelliah Selvam
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
| |
Collapse
|
8
|
Bernatchez JA, Kil YS, Barbosa da Silva E, Thomas D, McCall LI, Wendt KL, Souza JM, Ackermann J, McKerrow JH, Cichewicz RH, Siqueira-Neto JL. Identification of Leucinostatins from Ophiocordyceps sp. as Antiparasitic Agents against Trypanosoma cruzi. ACS OMEGA 2022; 7:7675-7682. [PMID: 35284725 PMCID: PMC8908367 DOI: 10.1021/acsomega.1c06347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Safe and effective treatments for Chagas disease, a potentially fatal parasitic infection associated with cardiac and gastrointestinal pathology and caused by the kinetoplastid parasite Trypanosoma cruzi, have yet to be developed. Benznidazole and nifurtimox, which are currently the only available drugs against T. cruzi, are associated with severe adverse effects and questionable efficacy in the late stage of the disease. Natural products have proven to be a rich source of new chemotypes for other infectious agents. We utilized a microscopy-based high-throughput phenotypic screen to identify inhibitors of T. cruzi from a library of natural product samples obtained from fungi procured through a Citizen Science Soil Collection Program (https://whatsinyourbackyard.org/) and the Great Lakes (USA) benthic environment. We identified five leucinostatins (A, B, F, NPDG C, and NPDG D) as potent inhibitors of the intracellular amastigote form of T. cruzi. Leucinostatin B also showed in vivo suppression of T. cruzi in a mouse model of Chagas disease. Given prior reports that leucinostatins A and B have antiparasitic activity against the related kinetoplastid Trypanosoma brucei, our findings suggest a potential cross-trypanocidal compound class and provide a platform for the further chemical derivatization of a potent chemical scaffold against T. cruzi.
Collapse
Affiliation(s)
- Jean A. Bernatchez
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yun-Seo Kil
- Department
of Chemistry and Biochemistry, University
of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
- Natural
Products Discovery Group, University of
Oklahoma, 101 Stephenson
Parkway, Norman, Oklahoma 73019, United States
- Institute
for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Elany Barbosa da Silva
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Diane Thomas
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Laura-Isobel McCall
- Department
of Chemistry and Biochemistry, University
of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
- Department
of Microbiology and Plant Biology, University
of Oklahoma, 101 Stephenson
Parkway, Norman, Oklahoma 73019, United States
- Laboratories
of Molecular Anthropology and Microbiome Research, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
| | - Karen L. Wendt
- Department
of Chemistry and Biochemistry, University
of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
- Natural
Products Discovery Group, University of
Oklahoma, 101 Stephenson
Parkway, Norman, Oklahoma 73019, United States
- Institute
for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Julia M. Souza
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Research
Group on Natural Products, Center for Research in Sciences and Technology, University of Franca, Avenida Dr. Armando Salles de Oliveira 201, Franca, São Paulo CEP 14404-600, Brazil
| | - Jasmin Ackermann
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Athena
Institute, VU University Amsterdam, De Boelelaan 1085, HV Amsterdam 1081, The Netherlands
| | - James H. McKerrow
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Robert H. Cichewicz
- Department
of Chemistry and Biochemistry, University
of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United
States
- Natural
Products Discovery Group, University of
Oklahoma, 101 Stephenson
Parkway, Norman, Oklahoma 73019, United States
- Institute
for Natural Products Applications and Research Technologies, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jair L. Siqueira-Neto
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Center
for Discovery and Innovation in Parasitic Diseases, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Robles AJ, Dai W, Haldar S, Ma H, Anderson VM, Overacker RD, Risinger AL, Loesgen S, Houghton PJ, Cichewicz RH, Mooberry SL. Altertoxin II, a Highly Effective and Specific Compound against Ewing Sarcoma. Cancers (Basel) 2021; 13:cancers13246176. [PMID: 34944795 PMCID: PMC8699301 DOI: 10.3390/cancers13246176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
A screening program designed to identify natural products with selective cytotoxic effects against cell lines representing different types of pediatric solid tumors led to the identification of altertoxin II as a highly potent and selective cytotoxin against Ewing sarcoma cell lines. Altertoxin II, but not the related compounds altertoxin I and alteichin, was highly effective against every Ewing sarcoma cell line tested, with an average 25-fold selectivity for these cells as compared to cells representing other pediatric and adult cancers. Mechanism of action studies revealed that altertoxin II causes DNA double-strand breaks, a rapid DNA damage response, and cell cycle accumulation in the S phase. Our studies also demonstrate that the potent effects of altertoxin II are partially dependent on the progression through the cell cycle, because the G1 arrest initiated by a CDK4/6 inhibitor decreased antiproliferative potency more than 10 times. Importantly, the cell-type-selective DNA-damaging effects of altertoxin II in Ewing sarcoma cells occur independently of its ability to bind directly to DNA. Ultimately, we found that altertoxin II has a dose-dependent in vivo antitumor efficacy against a Ewing sarcoma xenograft, suggesting that it has potential as a therapeutic drug lead and will be useful to identify novel targets for Ewing-sarcoma-specific therapies.
Collapse
Affiliation(s)
- Andrew J. Robles
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.J.R.); (A.L.R.)
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Wentao Dai
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, and Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA; (W.D.); (S.H.); (H.M.); (V.M.A.)
| | - Saikat Haldar
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, and Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA; (W.D.); (S.H.); (H.M.); (V.M.A.)
| | - Hongyan Ma
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, and Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA; (W.D.); (S.H.); (H.M.); (V.M.A.)
| | - Victoria M. Anderson
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, and Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA; (W.D.); (S.H.); (H.M.); (V.M.A.)
| | - Ross D. Overacker
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (R.D.O.); (S.L.)
| | - April L. Risinger
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.J.R.); (A.L.R.)
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
| | - Sandra Loesgen
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA; (R.D.O.); (S.L.)
- Whitney Laboratory for Marine Bioscience, Department of Chemistry, University of Florida, St. Augustine, FL 32080, USA
| | - Peter J. Houghton
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Greehey Children’s Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, and Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, Norman, OK 73019, USA; (W.D.); (S.H.); (H.M.); (V.M.A.)
- Correspondence: (R.H.C.); (S.L.M.); Tel.: +1-405-325-6969 (R.H.C.); +1-210-567-4788 (S.L.M.); Fax: +1-405-325-6111 (R.H.C.); +1-210-567-4300 (S.L.M.)
| | - Susan L. Mooberry
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA; (A.J.R.); (A.L.R.)
- Mays Cancer Center, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA;
- Correspondence: (R.H.C.); (S.L.M.); Tel.: +1-405-325-6969 (R.H.C.); +1-210-567-4788 (S.L.M.); Fax: +1-405-325-6111 (R.H.C.); +1-210-567-4300 (S.L.M.)
| |
Collapse
|
10
|
Fermaintt CS, Peramuna T, Cai S, Takahashi-Ruiz L, Essif JN, Grant CV, O’Keefe BR, Mooberry SL, Cichewicz RH, Risinger AL. Yuanhuacine Is a Potent and Selective Inhibitor of the Basal-Like 2 Subtype of Triple Negative Breast Cancer with Immunogenic Potential. Cancers (Basel) 2021; 13:cancers13112834. [PMID: 34200174 PMCID: PMC8201195 DOI: 10.3390/cancers13112834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/28/2022] Open
Abstract
The heterogeneity of triple negative breast cancer (TNBC) has led to efforts to further subtype this disease with the hope of identifying new molecular liabilities and drug targets. Furthermore, the finding that TNBC is the most inherently immunogenic type of breast cancer provides the potential for effective treatment with immune checkpoint inhibitors and immune adjuvants. Thus, we devised a dual screen to identify compounds from natural product extracts with TNBC subtype selectivity that also promote the expression of cytokines associated with antitumor immunity. These efforts led to the identification of yuanhuacine (1) as a potent and highly selective inhibitor of the basal-like 2 (BL2) subtype of TNBC that also promoted an antitumor associated cytokine signature in immune cells. The mechanism of action of yuanhuacine for both phenotypes depends on activation of protein kinase C (PKC), defining a novel target for the treatment of this clinical TNBC subtype. Yuanhuacine showed potent antitumor efficacy in animals bearing BL2 tumors further demonstrating that PKC could function as a potential pharmacological target for the treatment of the BL2 subtype of TNBC.
Collapse
Affiliation(s)
- Charles S. Fermaintt
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - Shengxin Cai
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - Leila Takahashi-Ruiz
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Jacob Nathaniel Essif
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Corena V. Grant
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Barry R. O’Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Susan L. Mooberry
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry and Natural Products Discovery Group, University of Oklahoma, Norman, OK 73019, USA; (T.P.); (S.C.); (R.H.C.)
| | - April L. Risinger
- Department of Pharmacology, Mays Cancer Center, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (C.S.F.); (L.T.-R.); (J.N.E.); (C.V.G.); (S.L.M.)
- Correspondence: ; Tel.: +1-210-567-6267
| |
Collapse
|
11
|
Ma H, Liang H, Cai S, O'Keefe BR, Mooberry SL, Cichewicz RH. An Integrated Strategy for the Detection, Dereplication, and Identification of DNA-Binding Biomolecules from Complex Natural Product Mixtures. JOURNAL OF NATURAL PRODUCTS 2021; 84:750-761. [PMID: 33226219 PMCID: PMC9229839 DOI: 10.1021/acs.jnatprod.0c00946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A fundamental factor in natural product drug discovery programs is the necessity to identify the active component(s) from complex chemical mixtures. Whereas this has traditionally been accomplished using bioassay-guided fractionation, we questioned whether alternative techniques could supplement and, in some cases, even supplant this approach. We speculated that a combination of ligand-fishing methods and modern analytical tools (e.g., LC-MS and online natural product databases) offered a route to enhance natural product drug discovery. Herein, a candidate solution referred to as the lickety-split ligand-affinity-based molecular angling system (LLAMAS) is described. This approach utilizes an ultrafiltration-based LC-PDA-MS/MS-guided DNA-binding assay in combination with the (i) Global Natural Products Social Molecular Networking, (ii) Dictionary of Natural Products, and (iii) SciFinder platforms to identify DNA binders in complex chemical mixtures. LLAMAS was initially vetted in tests using known small-molecule DNA binders and then optimized to a 96-well plate-based format. A set of 332 plant samples used in traditional Chinese medicine was screened for DNA-binding activity with LLAMAS, resulting in the identification of seven DNA-binding molecules, including berberine (12), palmatine (13), coptisine (14), fangchinoline (15), tetrandrine (16), daurisoline (17), and dauricine (18). These results demonstrate that LLAMAS is an effective natural product discovery platform for the efficient identification and dereplication of DNA-binding molecules from complex mixtures.
Collapse
Affiliation(s)
- Hongyan Ma
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, and Natural Products Discovery Group and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Huiyun Liang
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Shengxin Cai
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, and Natural Products Discovery Group and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Barry R O'Keefe
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center, San Antonio, Texas 78229, United States
| | - Robert H Cichewicz
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, and Natural Products Discovery Group and Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|