1
|
Huang G, Wang JP, He GL, Zhang W, Yu Q, Zhang SQ, Zhang M, Cai L, Shu Y, Xiao H. Antibacterial Diphenyl Ethers from Fungi Aspergillus versicolor YC-27. Chem Biodivers 2025:e202500612. [PMID: 40272314 DOI: 10.1002/cbdv.202500612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/25/2025]
Abstract
Microbial metabolites serve as a vital source for drug discovery, with diphenyl ether derivatives from Aspergillus sp. garnering significant attention due to their antimicrobial activities. This work focused on the antibacterial compounds from the fungi Aspergillus versicolor YC-27, which led to the isolation of one new diphenyl ether derivative, aspesicol (1), together with eight known compounds (2-9). The structure of the new compound was elucidated by spectroscopic methods, high-resolution electrospray ionization mass spectrometry, and nuclear magnetic resonance calculations with DP4+ methods. In the in vitro bioassays, compounds 4, 5, and 9 exhibited good inhibitory activity against Staphylococcus aureus with minimum inhibitory concentration (MIC) values of 8 µg/mL, and compound 6 showed potent inhibitory activity against S. aureus with MIC value of 4 µg/mL. These diphenyl ether derivatives demonstrating significant antimicrobial activity, particularly compound 6, represent highly promising lead candidates for the development of therapeutic agents against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Geng Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Jia-Peng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Gui-Lin He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Wei Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Qun Yu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Sheng-Qi Zhang
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Min Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| | - Le Cai
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Yan Shu
- Functional Molecules Analysis and Biotransformation Key Laboratory of Universities in Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, P. R. China
| |
Collapse
|
2
|
Shi J, Yu M, Chen W, Chen S, Qiu Y, Xu Z, Wang Y, Huang G, Zheng C. Recent Discovery of Nitrogen Heterocycles from Marine-Derived Aspergillus Species. Mar Drugs 2024; 22:321. [PMID: 39057430 PMCID: PMC11277891 DOI: 10.3390/md22070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen heterocycles have drawn considerable attention because of their structurally novel and significant biological activities. Marine-derived fungi, especially the Aspergillus species, possess unique metabolic pathways to produce secondary metabolites with novel structures and potent biological activities. This review prioritizes the structural diversity and biological activities of nitrogen heterocycles that are produced by marine-derived Aspergillus species from January 2019 to January 2024, and their relevant biological activities. A total of 306 new nitrogen heterocycles, including seven major categories-indole alkaloids, diketopiperazine alkaloids, quinazoline alkaloids, isoquinoline alkaloids pyrrolidine alkaloids, cyclopeptide alkaloids, and other heterocyclic alkaloids-are presented in this review. Among these nitrogen heterocycles, 52 compounds had novel skeleton structures. Remarkably, 103 compounds showed various biological activities, such as cytotoxic, antimicrobial, anti-inflammatory, antifungal, anti-virus, and enzyme-inhibitory activities, and 21 compounds showed potent activities. This paper will guide further investigations into the structural diversity and biological activities of nitrogen heterocycles derived from the Aspergillus species and their potential contributions to the future development of new natural drug products in the medicinal and agricultural fields.
Collapse
Affiliation(s)
- Jueying Shi
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Miao Yu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Weikang Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Shiji Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yikang Qiu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Zhenyang Xu
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Yi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (J.S.); (M.Y.); (W.C.); (S.C.); (Y.Q.); (Z.X.); (Y.W.)
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou 571158, China
| |
Collapse
|
3
|
Mayer AMS, Mayer VA, Swanson-Mungerson M, Pierce ML, Rodríguez AD, Nakamura F, Taglialatela-Scafati O. Marine Pharmacology in 2019-2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action. Mar Drugs 2024; 22:309. [PMID: 39057418 PMCID: PMC11278370 DOI: 10.3390/md22070309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/22/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The current 2019-2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019-2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019-2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories.
Collapse
Affiliation(s)
- Alejandro M. S. Mayer
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Veronica A. Mayer
- Department of Nursing Education, School of Nursing, Aurora University, 347 S. Gladstone Ave., Aurora, IL 60506, USA;
| | - Michelle Swanson-Mungerson
- Department of Microbiology and Immunology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Marsha L. Pierce
- Department of Pharmacology, College of Graduate Studies, Midwestern University, 555 31st Street, Downers Grove, IL 60515, USA;
| | - Abimael D. Rodríguez
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce de León Avenue, San Juan, PR 00926, USA;
| | - Fumiaki Nakamura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku 169-8555, Tokyo, Japan;
| | | |
Collapse
|
4
|
Wang Y, Cao G, Gan Y, Lin X, Yi X, Zhao L, Liu Y, Gao C, Bai M. New Cyclic Pentapeptides from the Mangrove-Derived Aspergillus fumigatus GXIMD 03099. Mar Drugs 2024; 22:282. [PMID: 38921593 PMCID: PMC11204760 DOI: 10.3390/md22060282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Four new cyclic pentapeptides, avellanins D-G (1-4), together with four known compounds (5-8), were isolated from a mangrove-derived Aspergillus fumigatus GXIMD 03099 fungus from Acanthus ilicifolius L. Their structures were elucidated by analysis of HRESIMS, NMR, and ESI-MS/MS data. Their absolute configurations were determined by X-ray diffraction analysis and Marfey's method. Compounds 1-8 were screened for insecticidal and antibacterial activities. Compound 2 showed insecticidal activity against newly hatched larvae of Culex quinquefasciatus with an LC50 value of 86.6 µM; compound 4 had weak activity against Vibrio harveyi with an MIC value of 5.85 µM.
Collapse
Affiliation(s)
- Yu Wang
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Guangping Cao
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuman Gan
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiao Lin
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiangxi Yi
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Longyan Zhao
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Chenghai Gao
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Meng Bai
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Y.W.); (G.C.); (Y.G.); (X.L.); (X.Y.); (L.Z.); (Y.L.)
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
5
|
Hafez Ghoran S, Taktaz F, Sousa E, Fernandes C, Kijjoa A. Peptides from Marine-Derived Fungi: Chemistry and Biological Activities. Mar Drugs 2023; 21:510. [PMID: 37888445 PMCID: PMC10608792 DOI: 10.3390/md21100510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/16/2023] [Accepted: 09/24/2023] [Indexed: 10/28/2023] Open
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity.
Collapse
Affiliation(s)
- Salar Hafez Ghoran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Emília Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal; (E.S.); (C.F.)
| | - Anake Kijjoa
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto and CIIMAR, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
6
|
Sciacca C, Cardullo N, Pulvirenti L, Di Francesco A, Muccilli V. Evaluation of honokiol, magnolol and of a library of new nitrogenated neolignans as pancreatic lipase inhibitors. Bioorg Chem 2023; 134:106455. [PMID: 36913880 DOI: 10.1016/j.bioorg.2023.106455] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Obesity is a complex disease defined as an excessive amount of body fat. It is considered a risk factor for several pathologies; therefore, there is an increasing interest in its treatment. Pancreatic lipase (PL) plays a key role in fat digestion, and its inhibition is a preliminary step in the search for anti-obesity agents. For this reason, many natural compounds and their derivatives are studied as new PL inhibitors. This study reports the synthesis of a library of new compounds inspired by two natural neolignans, honokiol (1) and magnolol (2) and bearing amino or nitro groups linked to a biphenyl core. The synthesis of unsymmetrically substituted biphenyls was achieved through an optimisation of the Suzuki-Miyaura cross-coupling reaction followed by the insertion of allyl chains, thus furnishing the O- and/or N-allyl derivatives, and finally, a sigmatropic rearrangement yielding in some cases, the C-allyl analogues. Magnolol, honokiol and the twenty-one synthesised biphenyls were evaluated for their in vitro inhibitory activity toward PL. Three compounds (15b, 16 and 17b) were more effective inhibitors than the natural neolignans (magnolol IC50 = 158.7 µM and honokiol IC50 = 115.5 µM) with IC50 of 41-44 µM. Detailed studies through kinetics suggested better inhibitory activity of the synthetic analogues compared with the natural 1 and 2. Magnolol (Ki = 614.3 µM; K'i of 140.9 µM) and the synthetic biphenyls 15b (Ki = 286.4 µM; K'i = 36.6 µM) and 16 (Ki = 176.2 µM; K'i = 6.4 µM) are mixed-type inhibitors, whereas honokiol (Ki = 674.8 µM) and 17b (Ki = 249 µM) are competitive inhibitors. Docking studies corroborated these findings, showing the best fitting for intermolecular interaction between biphenyl neolignans and PL. The above outcomes highlighted how the proposed structures could be considered interesting candidates for future studies for the development of more effective PL inhibitors.
Collapse
Affiliation(s)
- Claudia Sciacca
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Nunzio Cardullo
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Luana Pulvirenti
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Antonella Di Francesco
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy
| | - Vera Muccilli
- Department of Chemical Sciences, University of Catania, V.le A. Doria 6. 95125, Catania, Italy.
| |
Collapse
|
7
|
Fernandes C, Ribeiro R, Pinto M, Kijjoa A. Absolute Stereochemistry Determination of Bioactive Marine-Derived Cyclopeptides by Liquid Chromatography Methods: An Update Review (2018-2022). Molecules 2023; 28:615. [PMID: 36677673 PMCID: PMC9867211 DOI: 10.3390/molecules28020615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Cyclopeptides are considered as one of the most important classes of compounds derived from marine sources, due to their structural diversity and a myriad of their biological and pharmacological activities. Since marine-derived cyclopeptides consist of different amino acids, many of which are non-proteinogenic, they possess various stereogenic centers. In this respect, the structure elucidation of new molecular scaffolds obtained from natural sources, including marine-derived cyclopeptides, can become a very challenging task. The determination of the absolute configurations of the amino acid residues is accomplished, in most cases, by performing acidic hydrolysis, followed by analyses by liquid chromatography (LC). In a continuation with the authors' previous publication, and to analyze the current trends, the present review covers recently published works (from January 2018 to November 2022) regarding new cyclopeptides from marine organisms, with a special focus on their biological/pharmacological activities and the absolute stereochemical assignment of the amino acid residues. Ninety-one unreported marine-derived cyclopeptides were identified during this period, most of which displayed anticancer or antimicrobial activities. Marfey's method, which involves LC, was found to be the most frequently used for this purpose.
Collapse
Affiliation(s)
- Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Ricardo Ribeiro
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
| | - Anake Kijjoa
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, 4050-208 Matosinhos, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
8
|
Chemical constituents from mushroom Geoglossum fallax and their bioactive activities. Fitoterapia 2022; 163:105326. [DOI: 10.1016/j.fitote.2022.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022]
|
9
|
Wang H, Zhang R, Ma B, Wang W, Yu C, Han J, Zhu L, Zhang X, Dai H, Liu H, Chen B. Japonamides A and B, Two New Cyclohexadepsipeptides from the Marine-Sponge-Derived Fungus Aspergillus japonicus and Their Synergistic Antifungal Activities. J Fungi (Basel) 2022; 8:jof8101058. [PMID: 36294623 PMCID: PMC9605600 DOI: 10.3390/jof8101058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/09/2022] Open
Abstract
Two new cyclohexadepsipeptides japonamides A (1) and B (2) were isolated from the ethyl acetate extract of a marine-sponge-derived fungus Aspergillus japonicus based on molecular networking. Their structures were elucidated by comprehensive spectral analysis and their absolute configurations were confirmed by Marfey's method. Compounds 1 and 2 showed no antifungal activities against Candida albicans SC5314 measured by the broth microdilution method but exhibited prominent synergistic antifungal activities in combination with fluconazole, ketoconazole, or rapamycin. The Minimum inhibitory concentrations (MICs) of rapamycin, fluconazole, and ketoconazole were significantly decreased from 0.5 to 0.002 μM, from 0.25 to 0.063 μM, and from 0.016 to 0.002 μM, in the presence of compounds 1 or 2 at 3.125 μM, 12.5 μM, and 6.25 μM, respectively. Surprisingly, the combination of compounds 1 or 2 with rapamycin showed a strong synergistic effect, with fractional inhibitory concentration index (FICI) values of 0.03.
Collapse
Affiliation(s)
- Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Rui Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ben Ma
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Chong Yu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Junjie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huanqin Dai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongwei Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (H.L.); (B.C.)
| | - Baosong Chen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (H.L.); (B.C.)
| |
Collapse
|
10
|
Luo M, Chang S, Li Y, Xi X, Chen M, He N, Wang M, Zhao W, Xie Y. Molecular Networking-Based Screening Led to the Discovery of a Cyclic Heptadepsipeptide from an Endolichenic Xylaria sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:972-979. [PMID: 35385664 DOI: 10.1021/acs.jnatprod.1c01108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
MS/MS-based molecular networking strain prioritization led to the discovery of a group of cyclic depsipeptides from an endolichenic Xylaria sp. The main component, xylaroamide A (1), was obtained by LC-MS-guided isolation. The planar structure of compound 1 was elucidated via 1D and 2D NMR, as well as MS/MS data. The configurations were fully determined by the combination of advanced Marfey's analysis, partial hydrolysis, Mosher's reaction, and GIAO NMR calculation based on a restricted conformational search. A plausible biosynthetic pathway for xylaroamide A (1) involving a rare trans-acting N-methyltransferase is proposed based on bioinformatics analysis. Xylaroamide A (1) exhibited inhibitory activity against cancer cell lines BT-549 and RKO with IC50 values of 2.5 and 9.5 μM, respectively.
Collapse
|
11
|
Liu Y, Ding L, Shi Y, Yan X, Wu B, He S. Molecular Networking-Driven Discovery of Antibacterial Perinadines, New Tetracyclic Alkaloids from the Marine Sponge-Derived Fungus Aspergillus sp. ACS OMEGA 2022; 7:9909-9916. [PMID: 35350304 PMCID: PMC8945076 DOI: 10.1021/acsomega.2c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/25/2022] [Indexed: 05/12/2023]
Abstract
Two rare tetracyclic skeleton alkaloids named perinadines B and C (1 and 2) were isolated as mixtures of epimers from the marine-derived Aspergillus sp. LS116 driven by molecular networking. The planar structures of 1 and 2 were characterized by comprehensive spectroscopic data. Additionally, compounds 1 and 2 showed moderate in vitro antibacterial activity against Bacillus subtilis with minimum inhibitory concentration values of 32 and 64 μg/mL, respectively. Besides, both of the compounds were evaluated for anti-inflammatory activities in an in vivo zebra fish model.
Collapse
Affiliation(s)
- Yang Liu
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, Zhejiang, People’s Republic of China
| | - Lijian Ding
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, Zhejiang, People’s Republic of China
- E-mail:
| | - Yutong Shi
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, Zhejiang, People’s Republic of China
| | - Xiaojun Yan
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, Zhejiang, People’s Republic of China
| | - Bin Wu
- Ocean
College, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Shan He
- Li
Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research
Center, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315832, Zhejiang, People’s Republic of China
- Ningbo
Institute of Marine Medicine, Peking University, Ningbo 315800, People’s Republic of China
- E-mail:
| |
Collapse
|
12
|
Abstract
Covering: 2020This review covers the literature published in 2020 for marine natural products (MNPs), with 757 citations (747 for the period January to December 2020) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1407 in 420 papers for 2020), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. A meta analysis of bioactivity data relating to new MNPs reported over the last five years is also presented.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. .,Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.,School of Enivironment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
13
|
Asperflomide and asperflosamide, new N-methylated cyclopeptides from the marine sponge-derived fungus Aspergillus flocculosus 16D-1. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Lv H, Wang K, Xue Y, Chen J, Su H, Zhang J, Wu Y, Jia J, Bi H, Wang H, Hong K, Li X. Three New Metabolites From the Marine-Derived Fungus Aspergillus sp. WHUF03110. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211055009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two new xanthone derivatives, spinosusones A (1) and B (2), and a new tryptoquivaline analogue, asperdiazapinone G (3), together with nine known compounds (4-12) were isolated from the EtOAc extract of the marine-derived fungus Aspergillus sp . WHUF03110. The structures of 1-3 were determined by spectroscopic analysis, and comparison with literature data. Most of these isolated compounds were evaluated for their antimicrobial activities against ten Gram-negative and seven Gram-positive bacteria, Mycobacterium smegmatis ATCC 607, Candida albicans ATCC SC5314, and C. albicans YY-1-4. Compound 10 displayed strong antibacterial activity against five Gram-positive bacteria ( Bacillus subtilis 168, Staphylococcus aureus ATCC25923, S. aureus NEWMAN, S. aureus USA300, S. aureus NRS 271) with MIC values ranging from 1.0 to 2.0 μg/mL, and displayed moderate antibacterial activity against four Gram-negative bacteria ( Helicobacter pylori 26695, H. pylori G27, H. pylori 159, H. pylori 129) and M. smegmatis ATCC 607 with a MIC value of 8.0 μg/mL.
Collapse
Affiliation(s)
- Huawei Lv
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kebo Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yaxin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Jun Chen
- Shanghai Hadal Biomedical Engineering Co., Ltd, Shanghai, P. R. China
| | - Haibo Su
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jinkun Zhang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuanyuan Wu
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jia Jia
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hongkai Bi
- Department of Pathogen Biology & Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Hong Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Xingnuo Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
15
|
Li Y, Li Z. Cyclopeptide Derivatives from the Sponge-Derived Fungus Acremonium persicinum F10. Mar Drugs 2021; 19:537. [PMID: 34677436 PMCID: PMC8537450 DOI: 10.3390/md19100537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Cyclopeptides usually play a pivotal role, either in the viability or virulence of fungi. Two types of cyclopeptides, six new hydroxamate siderophore cyclohexapeptides (1-6), including acremonpeptides E and F, and their complexes with aluminum and ferric ions; one new cyclic pentapeptolide, aselacin D (9); together with a known compound, aselacin C (10), were isolated and characterized from the sponge-derived fungus Acremonium persicinum F10. In addition, two new siderophore analogues chelating gallium ions (Ga3+), Ga (III)-acremonpeptide E (7) and Ga (III)-acremonpeptide F (8), using isolated acremonpeptides E and F, were prepared. The planar structures of 1-10 were elucidated by HRESIMS and (1D and 2D) NMR. The absolute configurations of amino acids were determined by means of the advanced Marfey's method and X-ray single-crystal diffraction analysis. X-ray fluorescence (XRF) spectrometer was performed to disclose the elements of compound 1, indicating the existence of aluminum (Al). Al (III)-acremonpeptides E (1), Ga (III)-acremonpeptides E (5), Al (III)-acremonpeptide F (7), and Ga (III)-acremonpeptide F (8) displayed high in vitro anti-fungal activities, which are comparable to amphotericin B, against Aspergillus fumigatus and Aspergillus niger.
Collapse
Affiliation(s)
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| |
Collapse
|
16
|
Cardullo N, Muccilli V, Pulvirenti L, Tringali C. Natural Isoflavones and Semisynthetic Derivatives as Pancreatic Lipase Inhibitors. JOURNAL OF NATURAL PRODUCTS 2021; 84:654-665. [PMID: 33646787 DOI: 10.1021/acs.jnatprod.0c01387] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Obesity, now widespread all over the world, is frequently associated with some chronic diseases. Thus, there is a growing interest in the prevention and treatment of obesity. To date, the only antiobesity drug is orlistat, a natural product-derived pancreatic lipase (PL) inhibitor with some undesired side effects. In the last decades, many natural compounds or derivatives have been evaluated as potential PL inhibitors, and natural polyphenols are among the most promising for possible exploitation as antiobesity agents. However, few studies have been devoted to isoflavones. In this work, we report a study on the PL inhibitory properties of a small library of semisynthetic isoflavone derivatives together with the natural leads daidzein (1), genistein (2), and formononetin (3). In vitro lipase inhibition assay showed that 2 is the most promising PL inhibitor. Among synthetic isoflavones, the hydroxylated and brominated derivatives were more potent than their natural leads. Detailed studies through fluorescence measurements and kinetics of lipase inhibition showed that 2 and the bromoderivatives 10 and 11 have the greatest affinity for PL. Docking studies corroborated these findings highlighting the interactions between isoflavones and the enzyme, confirming that hydroxylation and bromination are useful modifications.
Collapse
Affiliation(s)
- Nunzio Cardullo
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Vera Muccilli
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Luana Pulvirenti
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | - Corrado Tringali
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| |
Collapse
|
17
|
Song MM, Xie YH, Chen WH, Hu YW, Zhao K, Liu YH, Huang XL, Liu QC, Wang JF. Diketopiperazine and enterotoxin analogues from the mangrove derived-soil Streptomyces sp. SCSIO 41400 and their biological evaluation. Nat Prod Res 2020; 36:1197-1204. [PMID: 33356598 DOI: 10.1080/14786419.2020.1864632] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A new diketopiperazine, cyclo-(d-8-acetoxyl-Pro-l-Leu) (1), together with eight known compounds (2-9) including three enterotoxins (2-4), four diketopiperazines (5-8) and maltol (9), were isolated from the mangrove derived-soil Streptomyces sp. SCSIO 41400. The planar structures of all compounds were determined from analysis of NMR spectra, MS, optical rotation and comparing with literature data. The absolute configuration of compound 1 was assigned by electronic circular dichroism (ECD). The isolated compounds (1-9) were tested for their acetyl cholinesterase (AChE) and pancreatic lipase (PL) enzyme inhibitory activities. Among them, the new diketopiperazine (1) displayed preferable PL enzyme inhibitory activity with IC50 value of 27.3 μg/mL, while compounds 2, 5 and 6 showed weak PL enzyme inhibitory activity. Further molecular docking simulation exhibited that compound 1 could be well bind with the catalytic pocket of the PL. Besides, compound 9 showed moderate antibacterial activity against Methicillin-resistant Staphylococcus aureus with MIC value of 12.5 μg/mL, which was comparable to that of the positive control ampicillin with MIC value of 3.125 μg/mL.
Collapse
Affiliation(s)
- Meng-Meng Song
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yu-Hui Xie
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China.,Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, China
| | - Wei-Hao Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yi-Wei Hu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Kai Zhao
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China.,CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Yong-Hong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xiao-Long Huang
- Laboratory of Tropical Biological Resources of the Ministry of Education of China, Hainan University, Haikou, China
| | - Qing-Chao Liu
- College of Chemical Engineering, Department of Pharmaceutical Engineering, Northwest University, Xi'an, China
| | - Jun-Feng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|