1
|
Boruta T, Pawlikowska W, Foryś M, Englart G, Ścigaczewska A. Changing the Inoculum Type From Preculture to Spore Suspension Markedly Alters the Production of Secondary Metabolites in Filamentous Microbial Coculture. Curr Microbiol 2024; 82:31. [PMID: 39644383 PMCID: PMC11625075 DOI: 10.1007/s00284-024-04007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
The shake flask cocultures of Aspergillus terreus and Streptomyces rimosus were investigated with regard to the production of mevinolinic acid (lovastatin), oxytetracycline, and other secondary metabolites (SMs). The aim of the study was to determine the effect of inoculum type (spore suspension or preculture) on the levels of SMs in the fermentation broth. Altogether, 17 SMs were detected, including 4 products with confirmed identities, 10 putatively annotated metabolites, and 3 unknown molecules. As observed over the course of qualitative and quantitative analyses, the selection of inoculum type markedly influenced the SM-related outcomes of cocultures. Depending on the coculture initiation procedure, replacing the preculture with spore inoculum positively affected the biosynthesis of oxytetracycline, butyrolactone I, (+)-geodin, as well as the molecules putatively identified as rimocidin, CE-108, and (+)-erdin. It was concluded that the comparative analyses of SM production in filamentous microbial cocultures and monocultures are dependent on the type of inoculum and thus the diversification of inocula is highly recommended in such studies. Furthermore, it was demonstrated that designing a coculture experiment that involves only a single type of inoculum may lead to the underestimation of biosynthetic repertoires of filamentous microorganisms.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland.
| | - Weronika Pawlikowska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland
| | - Martyna Foryś
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland
| | - Grzegorz Englart
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland
| | - Anna Ścigaczewska
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wólczańska 213, 93-005, Łódź, Poland
| |
Collapse
|
2
|
Meng Z, Tan Y, Duan YL, Li M. Monaspin B, a Novel Cyclohexyl-furan from Cocultivation of Monascus purpureus and Aspergillus oryzae, Exhibits Potent Antileukemic Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1114-1123. [PMID: 38166364 DOI: 10.1021/acs.jafc.3c08187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Natural products are a rich resource for the discovery of innovative drugs. Microbial cocultivation enables discovery of novel natural products through tandem enzymatic catalysis between different fungi. In this study, Monascus purpureus, as a food fermentation strain capable of producing abundant natural products, was chosen as an example of a cocultivation pair strain. Cocultivation screening revealed that M. purpureus and Aspergillus oryzae led to the production of two novel cyclohexyl-furans, Monaspins A and B. Optimization of the cocultivation mode and media enhanced the production of Monaspins A and B to 1.2 and 0.8 mg/L, respectively. Monaspins A and B were structurally elucidated by HR-ESI-MS and NMR. Furthermore, Monaspin B displayed potent antiproliferative activity against the leukemic HL-60 cell line by inducing apoptosis, with a half-maximal inhibitory concentration (IC50) of 160 nM. Moreover, in a mouse leukemia model, Monaspin B exhibited a promising in vivo antileukemic effect by reducing white blood cell, lymphocyte, and neutrophil counts. Collectively, these results indicate that Monaspin B is a promising candidate agent for leukemia therapy.
Collapse
Affiliation(s)
- Zitong Meng
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan 430030, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Ya-Li Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Key Laboratory of Environment Correlative Dietology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
3
|
Ansari M, Devi BM, Sarkar A, Chattopadhyay A, Satnami L, Balu P, Choudhary M, Shahid MA, Jailani AAK. Microbial Exudates as Biostimulants: Role in Plant Growth Promotion and Stress Mitigation. J Xenobiot 2023; 13:572-603. [PMID: 37873814 PMCID: PMC10594471 DOI: 10.3390/jox13040037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023] Open
Abstract
Microbes hold immense potential, based on the fact that they are widely acknowledged for their role in mitigating the detrimental impacts of chemical fertilizers and pesticides, which were extensively employed during the Green Revolution era. The consequence of this extensive use has been the degradation of agricultural land, soil health and fertility deterioration, and a decline in crop quality. Despite the existence of environmentally friendly and sustainable alternatives, microbial bioinoculants encounter numerous challenges in real-world agricultural settings. These challenges include harsh environmental conditions like unfavorable soil pH, temperature extremes, and nutrient imbalances, as well as stiff competition with native microbial species and host plant specificity. Moreover, obstacles spanning from large-scale production to commercialization persist. Therefore, substantial efforts are underway to identify superior solutions that can foster a sustainable and eco-conscious agricultural system. In this context, attention has shifted towards the utilization of cell-free microbial exudates as opposed to traditional microbial inoculants. Microbial exudates refer to the diverse array of cellular metabolites secreted by microbial cells. These metabolites enclose a wide range of chemical compounds, including sugars, organic acids, amino acids, peptides, siderophores, volatiles, and more. The composition and function of these compounds in exudates can vary considerably, depending on the specific microbial strains and prevailing environmental conditions. Remarkably, they possess the capability to modulate and influence various plant physiological processes, thereby inducing tolerance to both biotic and abiotic stresses. Furthermore, these exudates facilitate plant growth and aid in the remediation of environmental pollutants such as chemicals and heavy metals in agroecosystems. Much like live microbes, when applied, these exudates actively participate in the phyllosphere and rhizosphere, engaging in continuous interactions with plants and plant-associated microbes. Consequently, they play a pivotal role in reshaping the microbiome. The biostimulant properties exhibited by these exudates position them as promising biological components for fostering cleaner and more sustainable agricultural systems.
Collapse
Affiliation(s)
- Mariya Ansari
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - B. Megala Devi
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Ankita Sarkar
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Anirudha Chattopadhyay
- Pulses Research Station, S.D. Agricultural University, Sardarkrushinagar 385506, Gujarat, India;
| | - Lovkush Satnami
- Department of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India; (M.A.); (A.S.); (L.S.)
| | - Pooraniammal Balu
- Department of Biotechnology, Sastra Deemed University, Thanjavur 613401, Tamil Nadu, India;
| | - Manoj Choudhary
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
| | - Muhammad Adnan Shahid
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA;
| | - A. Abdul Kader Jailani
- Plant Pathology Department, University of Florida, Gainesville, FL 32611, USA;
- Plant Pathology Department, North Florida Research and Education Center, University of Florida, Quincy, FL 32351, USA
| |
Collapse
|
4
|
El-Hawary SS, Hassan MHA, Hudhud AO, Abdelmohsen UR, Mohammed R. Elicitation for activation of the actinomycete genome's cryptic secondary metabolite gene clusters. RSC Adv 2023; 13:5778-5795. [PMID: 36816076 PMCID: PMC9932869 DOI: 10.1039/d2ra08222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
This review summarizes the recent advances in the elicitation approaches used to activate the actinomycete genome's cryptic secondary metabolite gene clusters and shows the diversity of natural products obtained by various elicitation methods up to June 2022, such as co-cultivation of actinomycetes with actinomycetes, other non-actinomycete bacteria, fungi, cell-derived components, and/or algae. Chemical elicitation and molecular elicitation as transcription factor decoys, engineering regulatory genes, the promoter replacement strategy, global regulatory genes, and reporter-guided mutant selection were also reported. For researchers interested in this field, this review serves as a valuable resource for the latest studies and references.
Collapse
Affiliation(s)
- Seham S El-Hawary
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Cairo Egypt
| | - Marwa H A Hassan
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed O Hudhud
- Department of Pharmacognosy, Faculty of Pharmacy, Merit University Sohag 82511 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University Minia 61519 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University New Minia 61111 Egypt
| | - Rabab Mohammed
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
5
|
Boruta T, Ścigaczewska A, Bizukojć M. Production of secondary metabolites in stirred tank bioreactor co-cultures of Streptomyces noursei and Aspergillus terreus. Front Bioeng Biotechnol 2022; 10:1011220. [PMID: 36246390 PMCID: PMC9557299 DOI: 10.3389/fbioe.2022.1011220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The focus of the study was to characterize the bioprocess kinetics and secondary metabolites production in the novel microbial co-cultivation system involving Streptomyces noursei ATCC 11455 (the producer of an antifungal substance known as nystatin) and Aspergillus terreus ATCC 20542 (the source of lovastatin, a cholesterol-lowering drug). The investigated “A. terreus vs. S. noursei” stirred tank bioreactor co-cultures allowed for the concurrent development and observable biosynthetic activity of both species. In total, the production profiles of 50 secondary metabolites were monitored over the course of the study. The co-cultures were found to be effective in terms of enhancing the biosynthesis of several metabolic products, including mevinolinic acid, an acidic form of lovastatin. This work provided a methodological example of assessing the activity of a given strain in the co-culture by using the substrates which can be metabolized exclusively by this strain. Since S. noursei was shown to be incapable of lactose utilization, the observed changes in lactose levels were attributed to A. terreus and thus confirmed its viability. The study was complemented with the comparative microscopic observations of filamentous morphologies exhibited in the co-cultures and corresponding monocultures.
Collapse
|
6
|
Activation of Secondary Metabolism in Red Soil-Derived Streptomycetes via Co-Culture with Mycolic Acid-Containing Bacteria. Microorganisms 2021; 9:microorganisms9112187. [PMID: 34835313 PMCID: PMC8622677 DOI: 10.3390/microorganisms9112187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 11/25/2022] Open
Abstract
Our previous research has demonstrated a promising capacity of streptomycetes isolated from red soils to produce novel secondary metabolites, most of which, however, remain to be explored. Co-culturing with mycolic acid-containing bacteria (MACB) has been used successfully in activating the secondary metabolism in Streptomyces. Here, we co-cultured 44 strains of red soil-derived streptomycetes with four MACB of different species in a pairwise manner and analyzed the secondary metabolites. The results revealed that each of the MACB strains induced changes in the metabolite profiles of 35–40 streptomycetes tested, of which 12–14 streptomycetes produced “new” metabolites that were not detected in the pure cultures. Moreover, some of the co-cultures showed additional or enhanced antimicrobial activity compared to the pure cultures, indicating that co-culture may activate the production of bioactive compounds. From the co-culture-induced metabolites, we identified 49 putative new compounds. Taking the co-culture of Streptomyces sp. FXJ1.264 and Mycobacterium sp. HX09-1 as a case, we further explored the underlying mechanism of co-culture activation and found that it most likely relied on direct physical contact between the two living bacteria. Overall, our results verify co-culture with MACB as an effective approach to discover novel natural products from red soil-derived streptomycetes.
Collapse
|
7
|
Boruta T. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures. World J Microbiol Biotechnol 2021; 37:171. [PMID: 34490503 PMCID: PMC8421279 DOI: 10.1007/s11274-021-03141-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 12/17/2022]
Abstract
Filamentous microorganisms are potent sources of bioactive secondary metabolites, the molecules formed in response to complex environmental signals. The chemical diversity encoded in microbial genomes is only partially revealed by following the standard microbiological approaches. Mimicking the natural stimuli through laboratory co-cultivation is one of the most effective methods of awakening the formation of high-value metabolic products. Whereas the biosynthetic outcomes of co-cultures are reviewed extensively, the bioprocess aspects of such efforts are often overlooked. The aim of the present review is to discuss the submerged co-cultivation strategies used for triggering and enhancing secondary metabolites production in Streptomyces, a heavily investigated bacterial genus exhibiting an impressive repertoire of secondary metabolites, including a vast array of antibiotics. The previously published studies on influencing the biosynthetic capabilities of Streptomyces through co-cultivation are comparatively analyzed in the bioprocess perspective, mainly with the focus on the approaches of co-culture initiation, the experimental setup, the design of experimental controls and the ways of influencing the outcomes of co-cultivation processes. These topics are discussed in the general context of secondary metabolites production in submerged microbial co-cultures by referring to the Streptomyces-related studies as illustrative examples.
Collapse
Affiliation(s)
- Tomasz Boruta
- Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, ul. Wolczanska 213, 90-924, Lodz, Poland.
| |
Collapse
|
8
|
Comparative Genomics Reveals a Remarkable Biosynthetic Potential of the Streptomyces Phylogenetic Lineage Associated with Rugose-Ornamented Spores. mSystems 2021; 6:e0048921. [PMID: 34427515 PMCID: PMC8407293 DOI: 10.1128/msystems.00489-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Streptomyces is one of the richest sources of secondary metabolite biosynthetic gene clusters (BGCs). Sequencing of a large number of genomes has provided evidence that this well-known bacterial genus still harbors a large number of cryptic BGCs, and their metabolites are yet to be discovered. When taking a gene-first approach for new natural product discovery, BGC prioritization would be the most crucial step for the discovery of novel chemotypes. We hypothesized that strains with a greater number of BGCs would also contain a greater number of silent unique BGCs due to the presence of complex regulatory systems. Based on this hypothesis, we employed a comparative genomics approach to identify a specific Streptomyces phylogenetic lineage with the highest and yet-uncharacterized biosynthetic potential. A comparison of BGC abundance and genome size across 158 phylogenetically diverse Streptomyces type strains identified that members of the phylogenetic group characterized by the formation of rugose-ornamented spores possess the greatest number of BGCs (average, 50 BGCs) and also the largest genomes (average, 11.5 Mb). The study of genetic and biosynthetic diversities using comparative genomics of 11 sequenced genomes and a genetic similarity network analysis of BGCs suggested that members of this group carry a large number of unique BGCs, the majority of which are cryptic and not associated with any known natural product. We believe that members of this Streptomyces phylogenetic group possess a remarkable biosynthetic potential and thus would be a good target for a metabolite characterization study that could lead to the discovery of novel chemotypes. IMPORTANCE It is now well recognized that members of the genus Streptomyces still harbor a large number of cryptic BGCs in their genomes, which are mostly silent under laboratory culture conditions. Activation of transcriptionally silent BGCs is technically challenging and thus forms a bottleneck when taking a gene-first approach for the discovery of new natural products. Thus, it is important to focus activation efforts on strains with BGCs that have the potential to produce novel metabolites. The clade-level analysis of biosynthetic diversity could provide insights into the relationship between phylogenetic lineage and biosynthetic diversity. By exploring BGC abundance in relation to Streptomyces phylogeny, we identified a specific monophyletic lineage associated with the highest BGC abundance. Then, using a combined analysis of comparative genomics and a genetic network, we demonstrated that members of this lineage are genetically and biosynthetically diverse, contain a large number of cryptic BGCs with novel genotypes, and thus would be a good target for metabolite characterization studies.
Collapse
|