1
|
Er S, Parkkinen I, Trepczyk K, Seelbach A, Pasculli MS, De Lorenzo F, Luk K, Jankowska E, Chmielarz P, Domanskyi A, Airavaara M. GDNF reduces fibril-induced early-stage alpha-synuclein pathology after delivery of 20S proteasome inhibitor lactacystin. Eur J Pharm Sci 2025; 208:107048. [PMID: 39988264 DOI: 10.1016/j.ejps.2025.107048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/08/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Failures in protein homeostasis are linked to Parkinson's disease (PD) and other neurodegenerative diseases. Lewy bodies, proteinaceous inclusions rich in phosphorylated alpha-synuclein are a hallmark of PD. Glial cell line-derived neurotrophic factor (GDNF) can eliminate Lewy body-like inclusions in mouse dopamine neurons. This study explores whether GDNF has protective effects against alpha-synuclein protofibril toxicity under proteasome inhibition by lactacystin, both in vitro and in vivo. GDNF did not shield midbrain dopamine neurons from lactacystin-induced neurodegeneration, but still prevented phosphorylated alpha-synuclein accumulation. In vivo experiment with control or GDNF-expressing viral vectors assessed alpha-synuclein pathology spread in the nigrostriatal pathway and lactacystin-caused damage in the midbrain. GDNF overexpression reduced phosphorylated alpha-synuclein inclusions. Lactacystin-treated mice showed motor asymmetry and decreased spontaneous activity, exacerbated without AAV-GDNF pre-treatment. However, GDNF's neuroprotective effect could not be confirmed in vivo, due to side-effects from overexpression in the midbrain. Importantly, these findings show that GDNF continues to eliminate alpha-synuclein aggregation despite lactacystin-induced proteasome inhibition. Activating neurotrophic signaling pathways may protect against alpha-synuclein pathology in PD, even with impaired protein degradation mechanisms.
Collapse
Affiliation(s)
- Safak Er
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Ilmari Parkkinen
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Karolina Trepczyk
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Anna Seelbach
- Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | | | - Francesca De Lorenzo
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland
| | - Kelvin Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elzbieta Jankowska
- Department of Biomedical Chemistry, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Chmielarz
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Andrii Domanskyi
- Institute of Biotechnology, HiLIFE, University of Helsinki, 00014 Helsinki, Finland
| | - Mikko Airavaara
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland; Neuroscience Center, HiLIFE, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
2
|
Wang B, Cai J, Huang L, Chen Y, Wang R, Luo M, Yang M, Zhang M, Nasihat, Chen G, Huang G, Zheng C. Significance of research on natural products from marine-derived Aspergillus species as a source against pathogenic bacteria. Front Microbiol 2024; 15:1464135. [PMID: 39364162 PMCID: PMC11446753 DOI: 10.3389/fmicb.2024.1464135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/16/2024] [Indexed: 10/05/2024] Open
Abstract
Bacterial infections pose a significant clinical burden on global health. The growing incidence of drug-resistant pathogens highlights the critical necessity to identify and isolate bioactive compounds from marine resources. Marine-derived fungi could provide novel lead compounds against pathogenic bacteria. Due to the particularity of the marine environment, Aspergillus species derived from marine sources have proven to be potent producers of bioactive secondary metabolites and have played a considerable role in advancing drug development. This study reviews the structural diversity and activities against pathogenic bacteria of secondary metabolites isolated from marine-derived Aspergillus species over the past 14 years (January 2010-June 2024), and 337 natural products (including 145 new compounds) were described. The structures were divided into five major categories-terpenoids, nitrogen-containing compounds, polyketides, steroids, and other classes. These antimicrobial metabolites will offer lead compounds to the development and innovation of antimicrobial agents.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Jin Cai
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Longtao Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Yonghao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Ruoxi Wang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mengyao Luo
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Meng Yang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Mohan Zhang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Nasihat
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Guolei Huang
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, Haikou, China
| |
Collapse
|
3
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
4
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Prebble DW, Holland DC, Ferretti F, Hayton JB, Avery VM, Mellick GD, Carroll AR. α-Synuclein Aggregation Inhibitory and Antiplasmodial Activity of Constituents from the Australian Tree Eucalyptus cloeziana. JOURNAL OF NATURAL PRODUCTS 2023; 86:2171-2184. [PMID: 37610242 DOI: 10.1021/acs.jnatprod.3c00458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Amyloid protein aggregates are linked to the progression of neurodegenerative conditions and may play a role in life stages of Plasmodium falciparum, the parasite responsible for malaria. We hypothesize that amyloid protein aggregation inhibitors may show antiplasmodial activity and vice versa. To test this hypothesis, we screened antiplasmodial active extracts from 25 Australian eucalypt flowers using a binding affinity mass spectrometry assay to identify molecules that bind to the Parkinson's disease-implicated protein α-syn. Myrtucommulone P (1) from a flower extract of Eucalyptus cloeziana was shown to have α-syn affinity and antiplasmodial activity and to inhibit α-syn aggregation. 1 exists as a mixture of four interconverting rotamers. Assignment of the NMR resonances of all four rotamers allowed us to define the relative configuration, conformations, and ratios of rotamers in solution. Four additional new compounds, cloeziones A-C (2-4) and cloeperoxide (5), along with three known compounds were also isolated from E. cloeziana. The structures of all compounds were elucidated using HRMS and NMR analysis, and the absolute configurations for 2-4 were determined by comparison of TDDFT-calculated and experimental ECD data. Compounds 1-3 displayed antiplasmodial activities between IC50 6.6 and 16 μM. The α-syn inhibitory and antiplasmodial activity of myrtucommulone P (1) supports the hypothesized link between antiamyloidogenic and antiplasmodial activity.
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Francesca Ferretti
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Vicky M Avery
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
- Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane, Queensland 4111, Australia
- Infectious Diseases and Immunology, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland 4111, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia
| |
Collapse
|
6
|
Prebble DW, Holland DC, Hayton JB, Ferretti F, Jennings LK, Everson J, Xu M, Kiefel MJ, Mellick GD, Carroll AR. α-Synuclein Aggregation Inhibitory Procerolides and Diphenylalkanes from the Ascidian Polycarpa procera. JOURNAL OF NATURAL PRODUCTS 2023; 86:533-540. [PMID: 36787528 DOI: 10.1021/acs.jnatprod.2c01140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of the neuronal protein α-synuclein (α-syn) is intrinsically linked to the development and progression of Parkinson's disease (PD). Recently we screened the MeOH extracts from 283 marine invertebrates for α-syn binding activity using an affinity mass spectrometry (MS) binding assay and found that the extract of the ascidian Polycarpa procera displayed activity. A subsequent bioassay-guided purification led to the isolation of one new α-syn aggregation inhibitory butenolide procerolide E (3) and one new α-syn aggregation inhibitory diphenylbutyrate methyl procerolate A (5). Herein we report the structure elucidation of procerolide E (3) and methylprocerolate A (5) and α-syn aggregation inhibitory activity of procerolides C-E (1-3), methyl procerolate A (5) and procerone A (4). We also report the α-syn binding activity of 3-bromo-4-methoxyphenylacetamide (6) and a synthetic butenolide library, which has allowed us to determine α-syn aggregation inhibitory structure-activity relationships for this class of compounds.
Collapse
Affiliation(s)
- Dale W Prebble
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Francesca Ferretti
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Laurence K Jennings
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Jack Everson
- Institute for Glycomics, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Mingming Xu
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Milton J Kiefel
- Institute for Glycomics, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
7
|
Protective mechanisms by glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor against the α-synuclein accumulation in Parkinson's disease. Biochem Soc Trans 2023; 51:245-257. [PMID: 36794783 DOI: 10.1042/bst20220770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/17/2023]
Abstract
Synucleinopathies constitute a disease family named after alpha-synuclein protein, which is a significant component of the intracellular inclusions called Lewy bodies. Accompanying the progressive neurodegeneration, Lewy bodies and neurites are the main histopathologies of synucleinopathies. The complicated role of alpha-synuclein in the disease pathology makes it an attractive therapeutic target for disease-modifying treatments. GDNF is one of the most potent neurotrophic factors for dopamine neurons, whereas CDNF is protective and neurorestorative with entirely different mechanisms of action. Both have been in the clinical trials for the most common synucleinopathy, Parkinson's disease. With the AAV-GDNF clinical trials ongoing and the CDNF trial being finalized, their effects on abnormal alpha-synuclein accumulation are of great interest. Previous animal studies with an alpha-synuclein overexpression model have shown that GDNF was ineffective against alpha-synuclein accumulation. However, a recent study with cell culture and animal models of alpha-synuclein fibril inoculation has demonstrated the opposite by revealing that the GDNF/RET signaling cascade is required for the protective effect of GDNF on alpha-synuclein aggregation. CDNF, an ER resident protein, was shown to bind alpha-synuclein directly. CDNF reduced the uptake of alpha-synuclein fibrils by the neurons and alleviated the behavioral deficits induced by fibrils injected into the mouse brain. Thus, GDNF and CDNF can modulate different symptoms and pathologies of Parkinson's disease, and perhaps, similarly for other synucleinopathies. Their unique mechanisms for preventing alpha-synuclein-related pathology should be studied more carefully to develop disease-modifying therapies.
Collapse
|
8
|
Umer SM, Solangi M, Khan KM, Saleem RSZ. Indole-Containing Natural Products 2019-2022: Isolations, Reappraisals, Syntheses, and Biological Activities. Molecules 2022; 27:7586. [PMID: 36364413 PMCID: PMC9655573 DOI: 10.3390/molecules27217586] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 07/30/2023] Open
Abstract
Indole alkaloids represent a large subset of natural products, with more than 4100 known compounds. The majority of these alkaloids are biologically active, with some exhibiting excellent antitumor, antibacterial, antiviral, antifungal, and antiplasmodial activities. Consequently, the natural products of this class have attracted considerable attention as potential leads for novel therapeutics and are routinely isolated, characterized, and profiled to gauge their biological potential. However, data on indole alkaloids, their various structures, and bioactivities are complex due to their diverse sources, such as plants, fungi, bacteria, sponges, tunicates, and bryozoans; thus, isolation methods produce an incredible trove of information. The situation is exacerbated when synthetic derivatives, as well as their structures, bioactivities, and synthetic schemes, are considered. Thus, to make such data comprehensive and inform researchers about the current field's state, this review summarizes recent reports on novel indole alkaloids. It deals with the isolation and characterization of 250 novel indole alkaloids, a reappraisal of previously reported compounds, and total syntheses of indole alkaloids. In addition, several syntheses and semi-syntheses of indole-containing derivatives and their bioactivities are reported between January 2019 and July 2022.
Collapse
Affiliation(s)
- Syed Muhammad Umer
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| | - Mehwish Solangi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam 31441, Saudi Arabia
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, SBASSE, Lahore University of Management Sciences, Sector-U, DHA, Lahore 54792, Pakistan
| |
Collapse
|
9
|
Anh CV, Kang JS, Lee HS, Trinh PTH, Heo CS, Shin HJ. New Glycosylated Secondary Metabolites from Marine-Derived Bacteria. Mar Drugs 2022; 20:464. [PMID: 35877757 PMCID: PMC9321207 DOI: 10.3390/md20070464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Three new glycosylated secondary metabolites, including a new indole alkaloid, pityriacitrin D (1), and two new trehalose lipids (2 and 3), together with three known compounds (4-6) were isolated from two marine-derived bacterial strains, Bacillus siamensis 168CLC-66.1 and Tsukamurella pseudospumae IV19-045. The structures of 1-3 were determined by extensive analysis and comparison of their spectroscopic data with literature values. The absolute configurations of sugar moieties were determined by chemical derivatization followed by LC-MS analysis. Cytotoxicity of 1-3 against six cancer cell lines was evaluated by SRB assay, and 1 showed moderate activity against all the tested cell lines with GI50 values ranging from 8.0 to 10.9 µM.
Collapse
Affiliation(s)
- Cao Van Anh
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanjiro, Cheongju 28116, Korea;
| | - Hwa-Sun Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (H.-S.L.); (C.-S.H.)
| | - Phan Thi Hoai Trinh
- Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang 650000, Vietnam;
| | - Chang-Su Heo
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| | - Hee Jae Shin
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, 385 Haeyang-ro, Yeongdo-gu, Busan 49111, Korea; (C.V.A.); (H.-S.L.); (C.-S.H.)
- Department of Marine Biotechnology, University of Science and Technology (UST), 217 Gajungro, Yuseong-gu, Daejeon 34113, Korea
| |
Collapse
|
10
|
Prebble DW, Er S, Xu M, Hlushchuk I, Domanskyi A, Airavaara M, Ekins MG, Mellick GD, Carroll AR. α-synuclein aggregation inhibitory activity of the bromotyrosine derivatives aerothionin and aerophobin-2 from the subtropical marine sponge Aplysinella sp. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|