1
|
Ness M, Peramuna T, Wendt KL, Collins JE, King JB, Paes R, Santos NM, Okeke C, Miller CR, Chakrabarti D, Cichewicz RH, McCall LI. Rationally minimizing natural product libraries using mass spectrometry. mSystems 2025; 10:e0084424. [PMID: 39992101 PMCID: PMC11915828 DOI: 10.1128/msystems.00844-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 01/24/2025] [Indexed: 02/25/2025] Open
Abstract
Natural products are a critical source of novel chemotypes for drug discovery. However, the implementation of natural product extract libraries in high throughput screening is hampered by natural product structural redundancy and potential for bioactive re-discovery. This challenge and large library sizes drastically increase the time and cost during initial high throughput screens. To address these limitations, we developed a method that leverages liquid chromatography-tandem mass spectrometry spectral similarity to dramatically reduce natural product library size, with minimal bioactive loss, and applied this to a collection of fungal extracts. Importantly, this method also afforded increased bioassay hit rates against microbial targets, with broad applicability across assays and natural product sources. Thus, this method offers a broadly applicable strategy for accelerated and cost-effective natural product drug discovery. IMPORTANCE Natural product libraries are large collections of extracts derived from fungi, plants, bacteria, or any other natural sources. These libraries play an important role in the initial phases of drug discovery, providing the basis for bioassays against a target of interest. However, these collections often comprise thousands of extracts with sometimes overlapping chemical structures, which can result in a bottleneck in both time and costs for the initial phases of drug discovery. Here, we have developed a method that uses mass spectrometry to dramatically reduce the size of these libraries, with minimal tradeoffs and improved success rates in bioassays. Ultimately, this will speed up the process of bioactive candidate identification and isolation, and drug development overall.
Collapse
Affiliation(s)
- Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Karen L. Wendt
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Jennifer E. Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jarrod B. King
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Crystal Okeke
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Cameron R. Miller
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | | | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Ness M, Peramuna T, Wendt KL, Collins JE, King JB, Paes R, Santos NM, Okeke C, Miller CR, Chakrabarti D, Cichewicz RH, McCall LI. Rationally Minimizing Natural Product Libraries Using Mass Spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595232. [PMID: 38826280 PMCID: PMC11142144 DOI: 10.1101/2024.05.22.595232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Natural product libraries are crucial to drug development, but large libraries drastically increase the time and cost during initial high throughput screens. Here, we developed a method that leverages liquid chromatography-tandem mass spectrometry spectral similarity to dramatically reduce library size, with minimal bioactive loss. This method offers a broadly applicable strategy for accelerated drug discovery with cost reductions, which enable implementation in resource-limited settings.
Collapse
Affiliation(s)
- Monica Ness
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, 92182, United States
| | - Thilini Peramuna
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Karen L. Wendt
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Jennifer E. Collins
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Jarrod B. King
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Raphaella Paes
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Natalia Mojica Santos
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Crystal Okeke
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Cameron R. Miller
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, 32826, United States
| | - Robert H. Cichewicz
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, 92182, United States
| |
Collapse
|
3
|
Zhang Y, Zhang J, Du Q, Wu XM, Chen Y, Tan RX. Citrisorbicillinol, an undescribed hybrid sorbicillinoid with osteogenic activity from Penicillium citrinum ZY-2. Fitoterapia 2024; 173:105836. [PMID: 38286315 DOI: 10.1016/j.fitote.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
Citrisorbicillinol (1), along with six other known compounds (2-7), was isolated from an endphyte Penicillium citrinum ZY-2 of Plantago asiatica L. Citrisorbicillinol (1) was characterized as a skeletally unprecedented hybrid sorbicillinoid, and its unique framework is likely formed by intermolecular [4 + 2] cycloaddition between intermediates derived from citrinin and sorbicillinoid biosynthetic gene clusters. Compounds 1 and 2 demonstrated to promote osteoblastic differentiation in MC3T3-E1 cells, and to be osteogenic in the prednisolone induced osteoporotic zebrafish. Compounds 3-7 exhibited moderate cytotoxicity against four human cancer cell lines.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jing Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qi Du
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Chen
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
4
|
Zhou X, Wang MY, Cao QP, Yang Z, Meng QF, Fu SB. Chemical synthesis and mechanism of a natural product from endolichenic fungus with a broad-spectrum anti microorganism activity. Front Microbiol 2023; 14:1168386. [PMID: 37213499 PMCID: PMC10196465 DOI: 10.3389/fmicb.2023.1168386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Background The antibiotic resistance in various bacteria is consistently increasing and is posing a serious threat to human health, prompting the need for the discovery of novel structurally featured natural products with promising biological activities in drug research and development. Endolichenic microbes have been proven to be a fertile source to produce various chemical components, and therefore these microbes have been on a prime focus for exploring natural products. In this study, to explore potential biological resources and antibacterial natural products, the secondary metabolites of an endolichenic fungus have been investigated. Methods The antimicrobial products were isolated from the endolichenic fungus using various chromatographic methods, and the antibacterial and antifungal activities of the compounds were evaluated by the broth microdilution method under in vitro conditions. The antimicrobial mechanism has been discussed with measuring the dissolution of nucleic acid and protein, as well as the activity of alkaline phosphatase (AKP) in preliminary manner. Chemical synthesis of the active product compound 5 was also performed, starting from commercially available 2,6-dihydroxybenzaldehyde through a sequence of transformations that included methylation, the addition of propylmagnesium bromide on formyl group, the oxidation of secondary alcohol, and the deprotection of methyl ether motif. Results Among the 19 secondary metabolites of the endolichenic fungus, Daldinia childiae (compound 5) showed attractive antimicrobial activities on 10 of the 15 tested pathogenic strains, including Gram-positive bacteria, Gram-negative bacteria, and fungus. The Minimum Inhibitory Concentration (MIC) of compound 5 for Candida albicans 10213, Micrococcus luteus 261, Proteus vulgaris Z12, Shigella sonnet, and Staphylococcus aureus 6538 was identified as 16 μg/ml, whereas the Minimum Bactericidal Concentration (MBC) of other strains was identified as 64 μg/ml. Compound 5 could dramatically inhibit the growth of S. aureus 6538, P. vulgaris Z12, and C. albicans 10213 at the MBC, likely affecting the permeability of the cell wall and cell membrane. These results enriched the library of active strains and metabolites resources of endolichenic microorganisms. The chemical synthesis of the active compound was also performed in four steps, providing an alternative pathway to explore antimicrobial agents.
Collapse
Affiliation(s)
- Xuan Zhou
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ming-Yi Wang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qian-Ping Cao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ze Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qing-Feng Meng
- School of Public Health, Zunyi Medical University, Zunyi, China
- Centre of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- Qing-Feng Meng,
| | - Shao-Bin Fu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- *Correspondence: Shao-Bin Fu,
| |
Collapse
|