1
|
Queiroz EF, Guillarme D, Wolfender JL. Advanced high-resolution chromatographic strategies for efficient isolation of natural products from complex biological matrices: from metabolite profiling to pure chemical entities. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2024; 23:1415-1442. [PMID: 39574436 PMCID: PMC11576662 DOI: 10.1007/s11101-024-09928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/05/2024] [Indexed: 11/24/2024]
Abstract
The isolation of pure compounds from extracts represents a key step common to all investigations of natural product (NP) research. Isolation methods have gone through a remarkable evolution. Current approaches combine powerful metabolite profiling methods for compounds annotation with omics mining results and/or bioassay for bioactive NPs/biomarkers priorisation. Targeted isolation of prioritized NPs is performed using high-resolution chromatographic methods that closely match those used for analytical profiling. Considerable progress has been made by the introduction of innovative stationary phases providing remarkable selectivity for efficient NPs isolation. Today, efficient separation conditions determined at the analytical scale using high- or ultra-high-performance liquid chromatography can be optimized via HPLC modelling software and efficiently transferred to the semi-preparative scale by chromatographic calculation. This ensures similar selectivity at both the analytical and preparative scales and provides a precise separation prediction. High-resolution conditions at the preparative scale can notably be granted using optimized sample preparation and dry load sample introduction. Monitoring by ultraviolet, mass spectrometry, and or universal systems such as evaporative light scattering detectors and nuclear magnetic resonance allows to precisely guide the isolation or trigger the collection of specific NPs with different structural scaffolds. Such approaches can be applied at different scales depending on the amounts of NPs to be isolated. This review will showcase recent research to highlight both the potential and constraints of using these cutting-edge technologies for the isolation of plant and microorganism metabolites. Several strategies involving their application will be examined and critically discussed. Graphical abstract
Collapse
Affiliation(s)
- Emerson Ferreira Queiroz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, 1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
2
|
Liu X, Li LY, Zhang ZQ, Fu XC, Li RS, Yao JL, Gibbons S, Mu Q. Uncovering the Power of HSCCC: Separation of Diastereomeric and Regioisomeric Styrylpyrones from the Stem Bark of Goniothalamus leiocarpus. JOURNAL OF NATURAL PRODUCTS 2024; 87:1023-1035. [PMID: 38536967 DOI: 10.1021/acs.jnatprod.3c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The plant Goniothalamus leiocarpus of the Annonaceae family is used as an alternative medicine in tropical regions. Applying high-speed counter current chromatography (HSCCC), eight new bioactive styrylpyrone isomers, including 6R,7S,8R,2'S-goniolactone B (1), 6S,7S,8S,2'S-goniolactone B (2), 6R,7R,8R,2'S-goniolactone B (3), 6R,7S,8S,2'S-goniolactone C (4), 6R,7S,8R,2'S-goniolactone C (5), 6S,7R,8S,2'S-goniolactone C (6), and two positional isomers, 6R,7R,8R,2'S-goniolactone G (7) and 6S,7R,8R,2'S-goniolactone G (8), were isolated from a chloroform fraction (2.1 g) of G. leiocarpus, which had a prominent spot by TLC analysis. The structures of the new compounds were elucidated by MS, NMR, IR, and UV spectra, and their absolute configurations were determined by Mosher's method, ECD, and X-ray diffraction analysis. The isolates are characteristic components found in plants of the genus Goniothalamus and consist of two structural moieties: a styrylpyrone and a dihydroflavone unit. The isolation of the eight new compounds demonstrates the effectiveness of HSCCC in separating the isomers of natural styrylpyrone. In a bioactivity assessment, compounds 1 and 6 exhibited cytotoxic effects against the human colon carcinoma cell lines LS513 and SW620 with IC50 values ranging from 1.6 to 3.9 μM. Compounds 1, 2, 7, and 8 showed significant synergistic activity against antibiotic-resistant Staphylococcus aureus strains.
Collapse
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Ling-Yun Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhi-Qin Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiu-Chuan Fu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Rong-Sheng Li
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jia-Li Yao
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Simon Gibbons
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
3
|
Li YH, Mándi A, Li HL, Li XM, Li X, Meng LH, Yang SQ, Shi XS, Kurtán T, Wang BG. Isolation and characterization of three pairs of verrucosidin epimers from the marine sediment-derived fungus Penicillium cyclopium and configuration revision of penicyrone A and related analogues. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:223-231. [PMID: 37275535 PMCID: PMC10232390 DOI: 10.1007/s42995-023-00173-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 01/27/2023] [Indexed: 06/07/2023]
Abstract
Verrucosidins, a methylated α-pyrone class of polyketides rarely reported upon, have been implicated in one or more neurological diseases. Despite the significance of verrucosidins as neurotoxins, the absolute configurations of most of the derivatives have not been accurately characterized yet. In this study, three pairs of C-9 epimeric verrucosidin derivatives, including the known compounds penicyrones A and B (1a/1b) and 9-O-methylpenicyrones A and B (2a/2b), the new compounds 9-O-ethylpenicyrones A and B (3a/3b), together with the related known derivative verrucosidin (4), were isolated and identified from the culture extract of Penicillium cyclopium SD-413, which was obtained from the marine sediment collected from the East China sea. Their structures were established based on an in-depth analysis of nuclear magnetic resonances (NMR) and mass spectroscopic data. Determination of the absolute configurations of these compounds was accomplished by Mosher's method and time-dependent density functional theory (TDDFT) calculations of electronic circular dichroism (ECD) and optical rotation (OR). The configurational assignment of penicyrone A demonstrated that the previously reported C-6 absolute configuration of verrucosidin derivatives needs to be revised from (6S) to (6R). The 9R/9S epimers of compounds 1-3 were found to exhibit growth inhibition against some pathogenic bacteria, indicating that they have potential as lead compounds for the creation of antimicrobial agents. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00173-2.
Collapse
Affiliation(s)
- Yan-He Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Hong-Lei Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Ming Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Ling-Hong Meng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Sui-Qun Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Xiao-Shan Shi
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, Egyetem Tér 1, Debrecen, 4032 Hungary
| | - Bin-Gui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, and Laboratory of Marine Biology and Biotechnology at the Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071 China
- School of Marine Science, University of Chinese Academy of Sciences, Beijing, 100049 China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071 China
| |
Collapse
|
4
|
Hell T, Rutz A, Dürr L, Dobrzyński M, Reinhardt JK, Lehner T, Keller M, John A, Gupta M, Pertz O, Hamburger M, Wolfender JL, Garo E. Combining Activity Profiling with Advanced Annotation to Accelerate the Discovery of Natural Products Targeting Oncogenic Signaling in Melanoma. JOURNAL OF NATURAL PRODUCTS 2022; 85:1540-1554. [PMID: 35640148 DOI: 10.1021/acs.jnatprod.2c00146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The discovery of bioactive natural products remains a time-consuming and challenging task. The ability to link high-confidence metabolite annotations in crude extracts with activity would be highly beneficial to the drug discovery process. To address this challenge, HPLC-based activity profiling and advanced UHPLC-HRMS/MS metabolite profiling for annotation were combined to leverage the information obtained from both approaches on a crude extract scaled down to the submilligram level. This strategy was applied to a subset of an extract library screening aiming to identify natural products inhibiting oncogenic signaling in melanoma. Advanced annotation and data organization enabled the identification of compounds that were likely responsible for the activity in the extracts. These compounds belonged to two different natural product scaffolds, namely, brevipolides from a Hyptis brevipes extract and methoxylated flavonoids identified in three different extracts of Hyptis and Artemisia spp. Targeted isolation of these prioritized compounds led to five brevipolides and seven methoxylated flavonoids. Brevipolide A (1) and 6-methoxytricin (9) were the most potent compounds from each chemical class and displayed AKT activity inhibition with an IC50 of 17.6 ± 1.6 and 4.9 ± 0.2 μM, respectively.
Collapse
Affiliation(s)
- Tanja Hell
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Adriano Rutz
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Lara Dürr
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Maciej Dobrzyński
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Jakob K Reinhardt
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Timo Lehner
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Morris Keller
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Anika John
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Mahabir Gupta
- Center for Pharmacognostic Research and Panamanian Flora, Faculty of Pharmacy, University of Panama, Panama City 0824, Republic of Panama
| | - Olivier Pertz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012 Bern, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel-Servet 1, CH-1211 Geneva 4, Switzerland
| | - Eliane Garo
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Talaromycone A, a New 2-Benzopyran-1,3-Dione from Talaromyces wortmannii LGT-4. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Liu Y, Zhao Z, Hu C, Zhao C, Liu J, Du Y. Chiron approach for the total synthesis of brevipolide M. Synlett 2022. [DOI: 10.1055/a-1730-9857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
An efficient stereoselective synthesis of brevipolide M was established in 13 linear steps and 17.8% overall yields base on chiron approach. The key steps of our synthesis involved tandem homologation / tetrahydrofuran cyclization and sequential ring-closing metathesis (RCM) / double-bond migration in one-pot processes.
Collapse
Affiliation(s)
- Yang Liu
- Chemistry, RCEES, Beijing, China
| | | | - Chao Hu
- Chemistry, RCEES, Beijing, China
| | | | - Jun Liu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Centre for Eco-Environmental Sciences, Beijing, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Fu Z, Liu Y, Xu M, Yao X, Wang H, Zhang H. Absolute Configuration Determination of Two Diastereomeric Neovasifuranones A and B from Fusarium oxysporum R1 by a Combination of Mosher's Method and Chiroptical Approach. J Fungi (Basel) 2021; 8:40. [PMID: 35049980 PMCID: PMC8779425 DOI: 10.3390/jof8010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Endophytic fungi are one of prolific sources of bioactive natural products with potential application in biomedicine and agriculture. In our continuous search for antimicrobial secondary metabolites from Fusarium oxysporum R1 associated with traditional Chinese medicinal plant Rumex madaio Makino using one strain many compounds (OSMAC) strategy, two diastereomeric polyketides neovasifuranones A (3) and B (4) were obtained from its solid rice medium together with N-(2-phenylethyl)acetamide (1), 1-(3-hydroxy-2-methoxyphenyl)-ethanone (2) and 1,2-seco-trypacidin (5). Their planar structures were unambiguously determined using 1D NMR and MS spectroscopy techniques as well as comparison with the literature data. By a combination of the modified Mosher's reactions and chiroptical methods using time-dependent density functional theory-electronic circular dichroism (TDDFT-ECD) and optical rotatory dispersion (ORD), the absolute configurations of compounds 3 and 4 are firstly confirmed and, respectively, characterized as (4S,7S,8R), (4S,7S,8S). Bioassay results indicate that these metabolites 1-5 exhibit weak inhibitory effect on Helicobacter pylori 159 with MIC values of ≥16 μg/mL. An in-depth discussion for enhancement of fungal metabolite diversity is also proposed in this work.
Collapse
Affiliation(s)
- Zhiyang Fu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.F.); (Y.L.); (M.X.); (H.W.)
| | - Yuanyuan Liu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.F.); (Y.L.); (M.X.); (H.W.)
| | - Meijie Xu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.F.); (Y.L.); (M.X.); (H.W.)
| | - Xiaojun Yao
- Department of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China;
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.F.); (Y.L.); (M.X.); (H.W.)
| | - Huawei Zhang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (Z.F.); (Y.L.); (M.X.); (H.W.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| |
Collapse
|
8
|
Kurniawan YD, Rosyidah A. Strategies for the synthesis of brevipolides. Beilstein J Org Chem 2021; 17:2399-2416. [PMID: 34621402 PMCID: PMC8450957 DOI: 10.3762/bjoc.17.157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/28/2021] [Indexed: 11/23/2022] Open
Abstract
In recent years fifteen 5,6-dihydro-α-pyrone derivatives, bearing either a distinctive cyclopropane or furan ring and named brevipolides A–O (1–15), have been isolated from the invasive plant Hyptis brevipes Poit. Their fascinating structural features, and the potent biological activities, including cytotoxicity against an array of human cancer cell lines and inhibition of the chemokine receptor CCR5, make them attractive synthetic targets. This review article highlights the recent synthetic methodologies and briefly summarizes their biological activities.
Collapse
Affiliation(s)
- Yudhi Dwi Kurniawan
- Research Center for Biomaterials, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| | - A'liyatur Rosyidah
- Research Center for Biology, National Research and Innovation Agency, Cibinong, 16911, Indonesia
| |
Collapse
|
9
|
Bridi H, de Carvalho Meirelles G, Lino von Poser G. Subtribe Hyptidinae (Lamiaceae): A promising source of bioactive metabolites. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113225. [PMID: 32763419 PMCID: PMC7403033 DOI: 10.1016/j.jep.2020.113225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/24/2020] [Accepted: 07/14/2020] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The subtribe Hyptidinae contains approximately 400 accepted species distributed in 19 genera (Hyptis, Eriope, Condea, Cantinoa, Mesosphaerum, Cyanocephalus, Hypenia, Hyptidendron, Oocephalus, Medusantha, Gymneia, Marsypianthes, Leptohyptis, Martianthus, Asterohyptis, Eplingiella, Physominthe, Eriopidion and Rhaphiodon). This is the Lamiaceae clade with the largest number of species in Brazil and high rates of endemism. Some species have been used in different parts of the world mainly as insecticides/pest repellents, wound healing and pain-relief agents, as well as for the treatment of respiratory and gastrointestinal disorders. AIM OF THE REVIEW This review aims to discuss the current status concerning the taxonomy, ethnobotanical uses, phytochemistry and biological properties of species which compose the subtribe Hyptidinae. MATERIALS AND METHODS The available information was collected from scientific databases (ScienceDirect, Pubmed, Web of Science, Scopus, Google Scholar, ChemSpider, SciFinder ACS Publications, Wiley Online Library), as well as other literature sources (e.g. books, theses). RESULTS The phytochemical investigations of plants of this subtribe have led to the identification of almost 300 chemical constituents of different classes such as diterpenes, triterpenes, lignans, α-pyrones, flavonoids, phenolic acids and monoterpenes and sesquiterpenes, as components of essential oils. Extracts, essential oils and isolated compounds showed a series of biological activities such as insecticide/repellent, antimicrobial and antinociceptive, justifying some of the popular uses of the plants. In addition, a very relevant fact is that several species produce podophyllotoxin and related lignans. CONCLUSION Several species of Hyptidinae are used in folk medicine for treating many diseases but only a small fraction of the species has been explored and most of the traditional uses have not been validated by current investigations. In addition, the species of the subtribe appear to be very promising as alternative sources of podophyllotoxin-like lignans which are the lead compounds for the semi-synthesis of teniposide and etoposide, important antineoplastic agents. Thus, there is a wide-open door for future studies, both to support the popular uses of the plants and to find new biologically active compounds in this large number of species not yet explored.
Collapse
Affiliation(s)
- Henrique Bridi
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil
| | - Gabriela de Carvalho Meirelles
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil
| | - Gilsane Lino von Poser
- Universidade Federal Do Rio Grande Do Sul, Programa de Pós-Graduação Em Ciências Farmacêuticas, Avenida Ipiranga 2752, Porto Alegre, Brazil.
| |
Collapse
|
10
|
Lopes DT, Hoye TR, Alvarenga ES. Characterization of stereoisomeric 5-(2-nitro-1-phenylethyl)furan-2(5H)-ones by computation of 1 H and 13 C NMR chemical shifts and electronic circular dichroism spectra. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:43-51. [PMID: 32621355 PMCID: PMC7985851 DOI: 10.1002/mrc.5073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/28/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
In the present work, we describe the preparation of two diastereomers from the enantioselective Michael addition of furan-2(5H)-one to (E)-(2-nitrovinyl)benzene catalyzed by a dinuclear Zn-complex. The relative configurations of the diastereomeric products were assigned by comparing nuclear magnetic resonance (NMR) experimental chemical shift data with those computed by density functional theory (DFT) methods. Corrected mean absolute error (CMAE) and CP3 analyses were used to compare the data sets. The absolute configuration of each diastereomer was initially assigned by analysis of electronic circular dichroism (ECD) data, which was consistent with that of the known X-ray crystallographic structure of the product of a related reaction, namely, (R)-5-((R)-1-(4-chlorophenyl)-2-nitroethyl)furan-2(5H)-one.
Collapse
Affiliation(s)
- Dayane T. Lopes
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG 36571-900, Brazil
| | - Thomas R. Hoye
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elson S. Alvarenga
- Department of Chemistry, Universidade Federal de Viçosa, Viçosa, MG 36571-900, Brazil
| |
Collapse
|
11
|
Physicochemical analysis of multilayer adsorption mechanism of anionic dyes on lignocellulosic biomasses via statistical physics and density functional theory. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Martínez-Fructuoso L, Pereda-Miranda R, Fragoso-Serrano M, da Silva AS, Leitão SG. Dihydro-furanones from Hyptis species: Chemical correlations and DFT-NMR/ECD calculations for stereochemical assignments. PHYTOCHEMISTRY 2020; 179:112481. [PMID: 33017733 DOI: 10.1016/j.phytochem.2020.112481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
Dihydro-furanones are bioactive compounds isolated from various plants, marine fungi, and sponges. The present investigation describes the isolation by recycling HPLC and structural characterization by NMR of four previously undescribed 2(5H)-furanones, monticofuranolide A and pectinolides N-P, one phenylpropanoid, rosmarinic acid, and five known flavonoids, in addition to the undescribed natural flavonoid, 2R,3R-dihydrogossipetin or 5,7,8,3',4'-pentahydroxy flavanonol, from collections of H. monticola Mart. ex Benth and Hyptis pectinata (L.) Poit. Chemical correlations, resembling the biogenetic relationship of the isolated 2(5H)-furanones with their 5,6-dihydro-2H-pyran-2-one precursors, were accomplished to confirm their absolute configuration. Density functional theory-NMR/ECD calculations have been used to solve the absolute configuration for this type of compounds.
Collapse
Affiliation(s)
- Lucero Martínez-Fructuoso
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico.
| | - Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química and Programa de Maestría y Doctorado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, 04510, Mexico
| | - Aline Soares da Silva
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
14
|
Lu Q, Harmalkar DS, Choi Y, Lee K. An Overview of Saturated Cyclic Ethers: Biological Profiles and Synthetic Strategies. Molecules 2019; 24:molecules24203778. [PMID: 31640154 PMCID: PMC6833478 DOI: 10.3390/molecules24203778] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 12/18/2022] Open
Abstract
Saturated oxygen heterocycles are widely found in a broad array of natural products and other biologically active molecules. In medicinal chemistry, small and medium rings are also important synthetic intermediates since they can undergo ring-opening and -expansion reactions. These applications have driven numerous studies on the synthesis of oxygen-containing heterocycles and considerable effort has been devoted toward the development of methods for the construction of saturated oxygen heterocycles. This paper provides an overview of the biological roles and synthetic strategies of saturated cyclic ethers, covering some of the most studied and newly discovered related natural products in recent years. This paper also reports several promising and newly developed synthetic methods, emphasizing 3-7 membered rings.
Collapse
Affiliation(s)
- Qili Lu
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| | - Dipesh S Harmalkar
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea.
| | - Kyeong Lee
- College of Pharmacy, Dongguk University-Seoul, Goyang 10326, Korea.
| |
Collapse
|
15
|
Navarro-Santos P, Rodriguez-Olalde NE, Gallo M, Vargas R, Garza J, López-Albarrán P. On the initial stages of lignin polymerization through spin-polarized density functional theory. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.05.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhang YF, Yang ZD, Yang X, Yang LJ, Yao XJ, Shu ZM. Two new compounds, Talaromycin A and B, isolated from an endophytic fungus, Talaromyces aurantiacus. Nat Prod Res 2019; 34:2802-2808. [DOI: 10.1080/14786419.2019.1593163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yi-Fei Zhang
- School of Life Science and Engineering, Lanzhou University of Technology , Lanzhou , PR China
| | - Zhong-Duo Yang
- School of Life Science and Engineering, Lanzhou University of Technology , Lanzhou , PR China
| | - Xing Yang
- Department of Chemistry, Lanzhou University , Lanzhou , PR China
| | - Li-Jun Yang
- School of Life Science and Engineering, Lanzhou University of Technology , Lanzhou , PR China
| | - Xiao-Jun Yao
- Department of Chemistry, Lanzhou University , Lanzhou , PR China
| | - Zong-Mei Shu
- School of Life Science and Engineering, Lanzhou University of Technology , Lanzhou , PR China
- The Provincial Education Key Laboratory of Screening, Evaluation and Advanced Processing of Traditional Chinese Medicine and Tibetan Medicine, School of Life Science and Engineering, Lanzhou University of Technology , Lanzhou , PR China
| |
Collapse
|
17
|
Martínez-Fructuoso L, Pereda-Miranda R, Rosas-Ramírez D, Fragoso-Serrano M, Cerda-García-Rojas CM, da Silva AS, Leitão GG, Leitão SG. Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-Heptyl-5,6-dihydro-2 H-pyran-2-ones from Hyptis Species and Their Molecular Docking to α-Tubulin. JOURNAL OF NATURAL PRODUCTS 2019; 82:520-531. [PMID: 30601004 DOI: 10.1021/acs.jnatprod.8b00908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Cytotoxic 6-heptyl-5,6-dihydro-2 H-pyran-2-ones are chemical markers of Hyptis (Lamiaceae) and are responsible for some of the therapeutic properties of species with relevance to traditional medicine. The present investigation describes the isolation of known pectinolides A-C (1-3), in addition to the new pectinolides I-M (4-8), from two Mexican collections of H. pectinata by HPLC. The novel biosynthetically related monticolides A (9) and B (10) were also isolated by high-speed countercurrent chromatography from H. monticola, an endemic species of the Brazilian southeastern high-altitude regions. A combination of chemical correlations, chiroptical measurements, and Mosher ester NMR analysis was used to confirm their absolute configuration. The utility of DFT-NMR chemical shifts and JH-H calculations was assessed for epimer differentiation. Molecular docking studies indicated that 6-heptyl-5,6-dihydro-2 H-pyran-2-ones have a high affinity for the pironetin-binding site of α-tubulin, which may be a possible mechanism contributing to the cytotoxic potential of these small and flexible molecules.
Collapse
Affiliation(s)
- Lucero Martínez-Fructuoso
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Rogelio Pereda-Miranda
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Daniel Rosas-Ramírez
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Mabel Fragoso-Serrano
- Departamento de Farmacia, Facultad de Química , Universidad Nacional Autónoma de México , Ciudad Universitaria, Mexico City 04510 , Mexico
| | - Carlos M Cerda-García-Rojas
- Departamento de Química , Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional , A. P. 14-740, Mexico City 07000 , Mexico
| | - Aline Soares da Silva
- Faculdade de Farmacia , Universidade Federal do Rio de Janeiro , CCS, Bloco A, Ilha do Fundão, 21941-902 , Rio de Janeiro , Brazil
| | - Gilda Guimarães Leitão
- Instituto de Pesquisas de Produtos Naturais , Universidade Federal do Rio de Janeiro , CCS, Bloco H, Ilha do Fundão, 21941-590 , Rio de Janeiro , Brazil
| | - Suzana Guimarães Leitão
- Faculdade de Farmacia , Universidade Federal do Rio de Janeiro , CCS, Bloco A, Ilha do Fundão, 21941-902 , Rio de Janeiro , Brazil
| |
Collapse
|
18
|
Mata R, Figueroa M, Navarrete A, Rivero-Cruz I. Chemistry and Biology of Selected Mexican Medicinal Plants. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 108:1-142. [PMID: 30924013 DOI: 10.1007/978-3-030-01099-7_1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Herbal medicines are an integral element of alternative medical care in Mexico, and the best testimony to their efficacy and cultural value is their persistence in contemporary Mexican marketplaces where the highest percentages of medicinal and aromatic plants are sold. This chapter summarizes current trends in research on medicinal plants in Mexico, with emphasis on work carried out at the authors' laboratories. The most relevant phytochemical and pharmacological profiles of a selected group of plants used widely for treating major national health problems are described.From this contribution, it is evident that in the last five decades a significant amount of research on medicinal plants has been performed by Mexican scientists. Such efforts have led to the publication of many research papers in noted peer-reviewed journals and technical books. The isolation and structural characterization of hundreds of bioactive secondary metabolites have been accomplished, and most importantly, these studies have tended to support the ethnomedical uses of many different species. A multidisciplinary approach for investigating these plants has led to an increased emphasis on areas such as phytopharmacology, phytotoxicology, quality control, regulation, and conservation issues for these valuable resources. The medicinal plants analyzed so far have shown a very broad chemical diversity of their constituents, which have a high potential for exhibiting novel mechanistic effects biologically. The chapter shows also that there is need to conduct additional clinical studies on herbal drugs, in particular because the longstanding traditional evidence for their safety is not always sufficient to assure their rational use. There is also need to move to "omics" approaches for investigating the holistic effect and the influence of groups of phytochemicals on the whole organism. Mexican scientists may be expected to have bright prospects in this regard, which will imbue medicinal plant research with a new dynamism in the future.
Collapse
Affiliation(s)
- Rachel Mata
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Mario Figueroa
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Andrés Navarrete
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Isabel Rivero-Cruz
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
19
|
Bioactive seco-abietane rearranged diterpenoids from the aerial parts of Salvia prionitis. Bioorg Chem 2018; 81:454-460. [DOI: 10.1016/j.bioorg.2018.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 08/31/2018] [Accepted: 08/31/2018] [Indexed: 01/25/2023]
|
20
|
Raju KS, Sabitha G. First total synthesis of Brevipolide N and total synthesis of Brevipolide M. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Gao C, Du Y, Wang X, Cao H, Lin B, Liu Y, Di X. Hexahydrobenzophenanthridine alkaloids from Corydalis bungeana Turcz. and their anti-inflammatory activity. Bioorg Med Chem Lett 2018; 28:2265-2269. [DOI: 10.1016/j.bmcl.2018.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/11/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022]
|
22
|
Fang W, Wang J, Wang J, Shi L, Li K, Lin X, Min Y, Yang B, Tang L, Liu Y, Zhou X. Cytotoxic and Antibacterial Eremophilane Sesquiterpenes from the Marine-Derived Fungus Cochliobolus lunatus SCSIO41401. JOURNAL OF NATURAL PRODUCTS 2018; 81:1405-1410. [PMID: 29786436 DOI: 10.1021/acs.jnatprod.8b00015] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three new eremophilane sesquiterpenes, dendryphiellins H-J (1-3), and three new phthalide natural products (4-6) were isolated from the marine-derived fungus Cochliobolus lunatus SCSIO41401. Their structures including absolute configurations were determined by spectroscopic and calculated ECD analyses. Dendryphiellin I (2) showed cytotoxic and antibacterial activities against five cancer cell lines (IC50 1.4 to 4.3 μM) and three bacterial species (MIC 1.5 to 13 μg/mL), respectively. Dendryphiellin J (3), a rare naturally occurring aldoxime analogue, displayed cytotoxicities against ACHN and HepG-2 cells with IC50 values of 3.1 and 5.9 μM, respectively. Further studies indicated that 3 induced apoptosis in ACHN cells in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- Wei Fang
- Hubei Biopesticide Engineering Research Center , Hubei Academy of Agricultural Science , Wuhan 430064 , China
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Jianjiao Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Junfeng Wang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Liqiao Shi
- Hubei Biopesticide Engineering Research Center , Hubei Academy of Agricultural Science , Wuhan 430064 , China
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xiuping Lin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Yong Min
- Hubei Biopesticide Engineering Research Center , Hubei Academy of Agricultural Science , Wuhan 430064 , China
| | - Bin Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Lan Tang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences , Southern Medical University , Guangzhou 510515 , China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology , Chinese Academy of Sciences , Guangzhou 510301 , China
| |
Collapse
|
23
|
Shiva Raju K, Sabitha G. First stereoselective total synthesis of brevipolide M. Org Biomol Chem 2018; 15:6393-6400. [PMID: 28730192 DOI: 10.1039/c7ob01438d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first stereoselective total synthesis of a cytotoxic brevipolide M, which shares a pyrone framework bearing a tetrahydrofuran moiety and a cinnamate group with the readily available (-)-DET, is described. The key steps involved in the synthesis are the epoxide-opening, Brown's allylation, and the RCM reaction to install an α,β-unsaturated lactone ring and the inversion of the C-6' stereogenic hydroxyl group using the Mitsunobu reaction.
Collapse
Affiliation(s)
- Kasa Shiva Raju
- Natural Products Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India.
| | | |
Collapse
|
24
|
Ni G, Li JY, Yu DQ. Belamchinenin A, an unprecedented tricyclic-fused triterpenoid with cytotoxicity from Belamcanda chinensis. Org Biomol Chem 2018; 16:3754-3759. [DOI: 10.1039/c8ob00789f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report an unprecedented tricyclic-fused triterpenoid, which features a rigid and half-caged tricyclic nucleus. The absolute configuration of the tricyclic nucleus of 1 was unequivocally assigned by ECD calculation.
Collapse
Affiliation(s)
- Gang Ni
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - Jia-Yuan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| | - De-Quan Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines
- Institute of Materia Medica
- Chinese Academy of Medical Sciences and Peking Union Medical College
- Beijing 100050
- People's Republic of China
| |
Collapse
|
25
|
Xue GM, Han C, Chen C, Li LN, Wang XB, Yang MH, Gu YC, Luo JG, Kong LY. Artemisians A-D, Diseco-guaianolide Involved Heterodimeric [4 + 2] Adducts from Artemisia argyi. Org Lett 2017; 19:5410-5413. [PMID: 28956447 DOI: 10.1021/acs.orglett.7b02681] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Artemisians A-D (1-4), the first examples of [4 + 2] Diels-Alder type adducts presumably biosynthesized from a rare 1, 10-4, 5-diseco-guaianolide and a guaianolide diene, along with their possible precursor 5, were isolated from the traditional Chinese medicine Artemisia argyi. The structures of 1-4 were elucidated by extensive spectroscopic analyses and calculated electronic circular dichroism. Compound 2, with an IC50 value of 3.21 μM, exhibited significant antiproliferative activity via apoptosis induction and G2/M arrest in MDA-MB-468 cells.
Collapse
Affiliation(s)
- Gui-Min Xue
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chao Han
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Chen Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Nan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Xiao-Bing Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ming-Hua Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre , Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Jian-Guang Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Ling-Yi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University , 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| |
Collapse
|