1
|
Chang YH, Lee YC, Chen SH, Fang SY, Cheng TP, Chi CH, Tsai KC, Chen PJ, Hung HY. Discovery of a novel C2-functionalized chromen-4-one scaffold for the development of p38α MAPK signaling inhibitors to mitigate neutrophilic inflammatory responses. Biochem Pharmacol 2025; 235:116806. [PMID: 39956209 DOI: 10.1016/j.bcp.2025.116806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/05/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Neutrophil dysregulation is implicated in a spectrum of inflammatory pathologies, suggesting the potential for targeting neutrophilic hyperactivation as a pharmacological strategy to manage inflammatory disorders. Building upon prior research where 2-thiolphenoxychromone derivatives were found to inhibit neutrophilic generation of superoxide anions, this study focused on exploring the structure-activity relationship (SAR) of different C2 bridging moieties and anti-inflammatory effects using bioisosteric replacements and scaffold-hopping approaches. Among various chemotypes, the N-(4-oxo-4H-chromen-2-yl)benzenesulfonamide derivatives emerged as robust inhibitors of both superoxide anion generation and elastase release from fMLF-activated human neutrophils, with IC50 values in the single-digit micromolar range. Leveraging a forward pharmacology approach through computational prediction, compound 15b, a representative within this active molecular class, was discovered to exert these anti-inflammatory functions by blocking the p38α mitogen-activated protein kinase (MAPK) signaling cascade. This responded to a significant reduction in p38α MAPK and its downstream MK2 phosphorylation in activated neutrophils treated with 15b, with no apparent impact on extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and protein kinase B (AKT) phosphorylation levels. Additionally, this molecule exhibited inhibitory potential on intracellular reactive oxygen species (ROS) production, granule exocytosis, and chemotactic responses. Collectively, this study provides a novel skeleton for the development of inhibitors targeting the p38α MAPK pathway to mitigate neutrophilic inflammation.
Collapse
Affiliation(s)
- Yi-Han Chang
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Chen Lee
- Department of Nutrition Therapy, E-Da Cancer Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition Therapy, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition Therapy, E-Da Dachang Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Nutrition, College of Medicine, I-Shou University, Kaohsiung 824, Taiwan
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung 831, Taiwan
| | - Shu-Yen Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Tzu-Peng Cheng
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ching-Ho Chi
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Keng-Chang Tsai
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 112, Taiwan
| | - Po-Jen Chen
- Department of Medical Research, E-DA Hospital, I-Shou University, Kaohsiung 824, Taiwan; Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
2
|
Cheng M, Shu Y, Li M, Li C, Liang T, Zhang Z. Characterisation of an edible active film prepared from bacterial nanocellulose/forsythia essential oil Pickering emulsions with funoran and its application in fresh meat. Int J Biol Macromol 2024; 280:136141. [PMID: 39349084 DOI: 10.1016/j.ijbiomac.2024.136141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This study sought to develop an edible active film by integrating Pickering emulsions of forsythia essential oil and bacterial nanofibers at various concentrations into a film-forming matrix composed of funoran (F). The stability of the emulsions was evaluated through examination of the micro-morphology, particle size and distribution, 7-day emulsification index, and embedding rate of the Pickering emulsions. Subsequently, selected Pickering emulsions were incorporated into F to generate the edible active film. Scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy revealed that the Pickering emulsion was uniformly distributed throughout the F film, interconnected by hydrogen bonds. X-ray Diffraction spectra exhibited changes in peak intensity and shifts in position attributable to the edible active film. Pickering emulsion had a minimal impact on thermal stability. The film's tensile strength significantly increased, while elongation at break decreased. The heightened concentration of hydroxyl groups in the film led to increased thickness, reduced moisture content, and enhanced hygroscopicity. The edible active film exhibited superior antioxidant and antibacterial properties, thereby more efficiently shielding against oxygen and water vapour. In preservation tests involving chicken and lamb, the Pickering emulsion led to elevations in pH, total volatile basic nitrogen, and thiobarbituric acid reactive substance levels in the meat.
Collapse
Affiliation(s)
- Ming Cheng
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Ying Shu
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China; Hebei Layer Industry Technology Research Institute, Economic Development Zone, Handan, Hebei 545000, PR China
| | - Mengli Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Chaoyu Li
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China
| | - Tieqiang Liang
- College of Bioengineering, Sichuan University of Science & Engineering, Yibin 644000, PR China.
| | - Zhisheng Zhang
- College of Food Science and Technology, Hebei Agricultural University, Lekai South Avenue, Baoding, Hebei 071000, PR China.
| |
Collapse
|
3
|
Li JJ, Chen ZH, Liu CJ, Kang YS, Tu XP, Liang H, Shi W, Zhang FX. The phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity of Forsythiae Fructus: An updated systematic review. PHYTOCHEMISTRY 2024; 222:114096. [PMID: 38641141 DOI: 10.1016/j.phytochem.2024.114096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
Forsythiae Fructus (FF), the dried fruit of F. suspensa, is commonly used to treat fever, inflammation, etc in China or other Asian countries. FF is usually used as the core herb in traditional Chinese medicine preparations for the treatment of influenza, such as Shuang-huang-lian oral liquid and Yin-qiao powder, etc. Since the wide application and core role of FF, its research progress was summarized in terms of traditional uses, phytochemistry, pharmacology, pharmacokinetics, quality control, and toxicity. Meanwhile, the anti-influenza substances and mechanism of FF were emphasized. Till now, a total of 290 chemical components are identified in F. suspensa, and among them, 248 components were isolated and identified from FF, including 42 phenylethanoid glycosides, 48 lignans, 59 terpenoids, 14 flavonoids, 3 steroids, 24 cyclohexyl ethanol derivatives, 14 alkaloids, 26 organic acids, and 18 other types. FF and their pure compounds have the pharmacological activities of anti-virus, anti-inflammation, anti-oxidant, anti-bacteria, anti-tumor, neuroprotection, hepatoprotection, etc. Inhibition of TLR7, RIG-I, MAVS, NF-κB, MyD88 signaling pathway were the reported anti-influenza mechanisms of FF and phenylethanoid glycosides and lignans are the main active groups. However, the bioavailability of phenylethanoid glycosides and lignans of FF in vivo was low, which needed to be improved. Simultaneously, the un-elucidated compounds and anti-influenza substances of FF strongly needed to be explored. The current quality control of FF was only about forsythoside A and phillyrin, more active components should be taken into consideration. Moreover, there are no reports of toxicity of FF yet, but the toxicity of FF should be not neglected in clinical applications.
Collapse
Affiliation(s)
- Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Yu-Shuo Kang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Xin-Pu Tu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
4
|
Waswa EN, Ding SX, Wambua FM, Mkala EM, Mutinda ES, Odago WO, Amenu SG, Muthui SW, Linda EL, Katumo DM, Waema CM, Yang JX, Hu GW. The genus Actinidia Lindl. (Actinidiaceae): A comprehensive review on its ethnobotany, phytochemistry, and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117222. [PMID: 37793579 DOI: 10.1016/j.jep.2023.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Actinidia Lindl. belongs to the family Actinidiaceae. Plants of this genus are popularly known as kiwifruits and are traditionally used to treat a wide range of ailments associated with digestive disorders, rheumatism, kidney problems, cardiovascular system, cancers, dyspepsia, hemorrhoids, and diabetes among others. AIM This review discusses the ethnobotanical uses, phytochemical profile, and known pharmacological properties of Actinidia plants, to understand their connotations and provide the scientific basis for future studies. MATERIALS AND METHODS The data were obtained by surveying journal articles, books, and dissertations using various search engines such as Google Scholar, PubMed, Science Direct, Springer Link, and Web of Science. The online databases; World Flora Online, Plants of the World Online, International Plant Names Index, and Global Biodiversity Information Facility were used to confirm the distribution and validate scientific names of Actinidia plants. The isolated metabolites from these species were illustrated using ChemBio Draw ultra-version 14.0 software. RESULTS Ten (10) species of Actinidia genus have been reported as significant sources of traditional medicines utilized to remedy diverse illnesses. Our findings revealed that a total of 873 secondary metabolites belonging to different classes such as terpenoids, phenolic compounds, alcohols, ketones, organic acids, esters, hydrocarbons, and steroids have been isolated from different species of Actinidia. These compounds were mainly related to the exhibited antioxidant, antimicrobial, anti-inflammatory, antidiabetic, antiproliferative, anti-angiogenic, anticinoceptive, anti-tumor, and anticancer activities. CONCLUSION This study assessed the information related to the ethnobotanical uses, phytochemical compounds, and pharmacological properties of Actinidia species, which indicate that they possess diverse bioactive metabolites with interesting bioactivities. Actinidia plants have great potential for applications in folklore medicines and pharmaceuticals due to their wide ethnomedicinal uses and biological activities. Traditional uses of several Actinidia species are supported by scientific evidences, qualifying them as possible modern remedies for various ailments. Nonetheless, the currently available data has several gaps in understanding the herbal utilization of most Actinidia species. Thus, further research into their toxicity, mechanisms of actions of the isolated bioactive metabolites, as well as scientific connotations between the traditional medicinal uses and pharmacological properties is required to unravel their efficacy in therapeutic potential for safe clinical application.
Collapse
Affiliation(s)
- Emmanuel Nyongesa Waswa
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Xiong Ding
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Felix Muema Wambua
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elijah Mbandi Mkala
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elizabeth Syowai Mutinda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wyclif Ochieng Odago
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sara Getachew Amenu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Samuel Wamburu Muthui
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Elive Limunga Linda
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei University, Wuhan, 430011, China
| | | | | | - Jia-Xin Yang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
5
|
Zhang H, Jiang X, Zhang D, Yang Y, Xie Q, Wu C. An integrated approach for studying the metabolic profiling of herbal medicine in mice using high-resolution mass spectrometry and metabolomics data processing tools. J Chromatogr A 2024; 1713:464505. [PMID: 37976901 DOI: 10.1016/j.chroma.2023.464505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Analysis of exposure to traditional Chinese medicine (TCM) in vivo based on mass spectrometry is helpful for the screening of effective ingredients of TCM and the development of new drugs. The method of screening biomarkers through metabolomics technology is a nontargeted research method to explore the differential components between two sets of biological samples. By taking this advantage, this study aims to takes Forsythia suspensa, which is a TCM also known as Lian Qiao (LQ), as the research object and to study its in vivo exposure by using metabolomics technology. By comparing the significant differences between biological samples before and after administration, it could be focused on the components that were significantly upregulated, where a complete set of analysis strategies for nontargeted TCM in vivo exposure mass spectrometry was established. Furthermore, the threshold parameters for peak extraction, parameter selection during statistical data analysis, and sample concentration multiples in this method have also been optimized. More interestingly, by using the established analysis strategy, we found 393 LQ-related chemical components in mice after administration, including 102 prototypes and 291 LQ-related metabolites, and plotted their metabolic profiles in vivo. In short, this study has obtained a complete mass spectrum of LQ exposure in mice in vivo for the first time, which provides a reference for research on the active ingredients of LQ in vivo. More importantly, compared with other methods, the analysis strategy of nontargeted exposure of TCM in vivo-based mass spectrometry, constructed by using this research method, has good universality and does not require self-developed postprocessing software. It is worth mentioning that, for the identification and characterization of trace amounts of metabolites in vivo, this analysis strategy has no discrimination and has a detection capability similar to that of highly exposed components.
Collapse
Affiliation(s)
- Hairong Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaojuan Jiang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dandan Zhang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuexin Yang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiang Xie
- Department of Cardiology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caisheng Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cell Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
6
|
Zhu Z, Yang C, Keyhani NO, Liu S, Pu H, Jia P, Wu D, Stevenson PC, Fernández-Grandon GM, Pan J, Chen Y, Guan X, Qiu J. Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola. J Fungi (Basel) 2023; 9:1175. [PMID: 38132776 PMCID: PMC10744799 DOI: 10.3390/jof9121175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1-6) and three hopane triterpenes (7-9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54-26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2-), with IC50 values of compounds 2, 4, and 6 ~3.45-14.04 μg/mL and 22.87-53.31 μg/mL towards DPPH and O2-, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.
Collapse
Affiliation(s)
- Zhiqiang Zhu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Chenjie Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA;
| | - Sen Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Huili Pu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Peisong Jia
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Dongmei Wu
- Biotechnology Research Institute, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi 832061, China;
| | - Philip C. Stevenson
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK; (P.C.S.); (G.M.F.-G.)
| | | | - Jieming Pan
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China;
| | - Yuxi Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| | - Xiayu Guan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Junzhi Qiu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.Z.); (C.Y.); (S.L.); (H.P.); (Y.C.)
| |
Collapse
|
7
|
Jiang MH, Zhao P, Zhou WY, Huang XX, Song SJ. Lignans and monoterpenes from Daphne penicillata Rehd and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Patyra A, Kołtun-Jasion M, Jakubiak O, Kiss AK. Extraction Techniques and Analytical Methods for Isolation and Characterization of Lignans. PLANTS 2022; 11:plants11172323. [PMID: 36079704 PMCID: PMC9460740 DOI: 10.3390/plants11172323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Lignans are a group of natural polyphenols present in medicinal plants and in plants which are a part of the human diet for which more and more pharmacological activities, such as antimicrobial, anti-inflammatory, hypoglycemic, and cytoprotective, are being reported. However, it is their cytotoxic activities that are best understood and which have shed light on this group. Two anticancer drugs, etoposide, and teniposide, were derived from a potent cytotoxic agent—podophyllotoxin from the roots of Podophyllum peltatum. The evidence from clinical and observational studies suggests that human microbiota metabolites (enterolactone, enterodiol) of dietary lignans (secoisolariciresinol, pinoresinol, lariciresinol, matairesinol, syringaresinol, medioresinol, and sesamin) are associated with a reduced risk of some hormone-dependent cancers. The biological in vitro, pharmacological in vivo investigations, and clinical studies demand significant amounts of pure compounds, as well as the use of well-defined and standardized extracts. That is why proper extract preparation, optimization of lignan extraction, and identification are crucial steps in the development of lignan use in medicine. This review focuses on lignan extraction, purification, fractionation, separation, and isolation methods, as well as on chromatographic, spectrometric, and spectroscopic techniques for their qualitative and quantitative analysis.
Collapse
Affiliation(s)
- Andrzej Patyra
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| | - Małgorzata Kołtun-Jasion
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Oktawia Jakubiak
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Anna Karolina Kiss
- Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, 02-097 Warsaw, Poland
- Correspondence: (A.P.); (A.K.K.); Tel.: +48-662-11-77-90 (A.P.); +48-511-13-98-03 (A.K.K.)
| |
Collapse
|
9
|
Zhou W, Yan X, Zhai Y, Liu H, Guan L, Qiao Y, Jiang J, Peng L. Phillygenin ameliorates nonalcoholic fatty liver disease via TFEB-mediated lysosome biogenesis and lipophagy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 103:154235. [PMID: 35716542 DOI: 10.1016/j.phymed.2022.154235] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Lipophagy is an autophagic process, which delivers the intracellular lipid droplets to the lysosomes for degradation. Recent studies revealed that the impairment of lysosomal biogenesis and autophagic flux led to dysregulation of lipophagy in hepatocytes, which exacerbated the development of nonalcoholic fatty liver disease (NAFLD). Therefore, agents restoring autophagic flux and lipophagy in hepatocytes may have therapeutic potential against this increasingly prevalent disease. Phillygenin (PHI), a lignin extracted from Forsythia suspense, exerts hepatoprotective and anti-inflammatory effects. However, the effect of PHI on NAFLD remains unknown. PURPOSE This study aimed to investigate the protective effect of PHI on NAFLD and elucidate the underlying mechanism. METHODS The effects of PHI were examined in palmitate (PA)-stimulated AML12 cells and primary hepatocytes, as well as in NAFLD mice induced by a high-fat diet (HFD). We also used transcription factor EB (TFEB) knockdown hepatocytes and hepatocyte-specific TFEB knockout (TFEBΔhep) mice for mechanistic studies. In vivo and in vitro studies were performed using western blots, immunofluorescence techniques, and transmission electron microscopy. RESULTS Our results indicated that autophagic flux and lysosome biogenesis in PA-stimulated hepatocytes were impaired. PHI alleviated lipid deposition by increasing lysosomal biogenesis and autophagic flux. It also stimulated the release of endoplasmic reticulum Ca2+ to activate calcineurin, which regulated TFEB dephosphorylation and nuclear translocation, and promoted lysosomal biogenesis. In addition, PHI blocked the NLRP3 inflammasome pathway and improved hepatocyte inflammation in an autophagy-dependent manner. Consistent with the in vitro results, PHI improved hepatic steatosis and inflammation in HFD mice, but these beneficial effects were eliminated in hepatocyte-specific TFEB knockout mice. CONCLUSION Despite PHI has been reported to have anti-hepatic fibrosis effects, whether it has a hepatoprotective effects against NAFLD and the underlying molecular mechanism remain unclear. Herein, we found that PHI restored lipophagy and suppressed lipid accumulation and inflammation by regulating the Ca2+-calcineurin-TFEB axis in hepatocytes. Thus, PHI represents a therapeutic candidate for the treatment of NAFLD.
Collapse
Affiliation(s)
- Wenling Zhou
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Xu Yan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuanyuan Zhai
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China; College of Life Sciences, Hebei University, Baoding 071002, China
| | - Hao Liu
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lingling Guan
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yuan Qiao
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jizhi Jiang
- College of Life Sciences, Hebei University, Baoding 071002, China.
| | - Liang Peng
- Beijing Key Laboratory for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
10
|
Yang BH, Zhang YJ, Bai M, Zhang Q, Li CX, Huang XX, Song SJ. Chemical constituents from the fruits of Solanum nigrum and their chemotaxonomic significance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Irshad R, Kabbashi ASA, Salawu KM, Ur-Rehman A, Cao YG, Fayaz A, Khan FA, Tul-Wahab A, Choudhary MI, Wang Y. A new ent-clerodane diterpene from Detarium microcarpum Guill. & Perr. and its protective potential for osteoporosis. Fitoterapia 2022; 160:105226. [PMID: 35659522 DOI: 10.1016/j.fitote.2022.105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022]
Abstract
A new clerodane diterpene, named 6α-hydroxy-3,13E-clerodien-15-oic acid (1), together with a known clerodane diterpene (2), four known labdane diterpenes (3-6), a triterpenoid (7), a known steroid (8), and two benzenoid compounds (9 and 10) were isolated from Detarium microcarpum Guill. & Perr. The structures of all obtained compounds were determined by chemical properties and spectroscopic evidence, accompanied by comparisons with data in the literature. Electronic circular dichroism (ECD) was performed for compounds 1-4 to confirm the absolute configuration. Compounds 1-3 and 8-10 were evaluated for the protective effect on osteoblasts. Compound 1 was observed to increase the proliferation of dexamethasone (DEX)-treated MC3T3-E1 cells significantly at 1 μM, which was comparable with the positive control geniposide at 10 μM. The results were further confirmed by flow cytometry analysis. In addition, compound 1 increased the level of alkaline phosphatase (ALP) and mineralization in osteoblasts inhibited by DEX. Moreover, Compound 9 (vanillic acid) showed a pronounced inhibition (IC50 6.5 ± 0.6 μM) on reactive oxygen species (ROS) production, and 10 (4-O-methyl gallic acid) showed a good inhibition with IC50 as 103.3 ± 2.2 μM, compared with the standard drug ibuprofen (IC50 54.2 ± 9.2 μM). Besides, compounds 1-3 and 8-10 were non-cytotoxic against MCF-7, NCI-H460, Hela, and BJ cell lines.
Collapse
Affiliation(s)
- Rimsha Irshad
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Sino-Pakistan Cooperation Center for Traditional Chinese Medicine, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ahmed Saeed Ali Kabbashi
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, Khartoum 11113, Sudan
| | - Kayode Muritala Salawu
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Pharmacognosy and Drug Development, University of Ilorin, Nigeria
| | - Aziz Ur-Rehman
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Yan-Gang Cao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Aneela Fayaz
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Farooq-Ahmad Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center (TWC) for Chemical Sciences, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atia Tul-Wahab
- Sino-Pakistan Cooperation Center for Traditional Chinese Medicine, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - M Iqbal Choudhary
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Sino-Pakistan Cooperation Center for Traditional Chinese Medicine, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Third World Center (TWC) for Chemical Sciences, International Center for Chemical & Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Yan Wang
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan; Sino-Pakistan Cooperation Center for Traditional Chinese Medicine, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
12
|
XIA H, ZHANG JF, WANG LY, XIA GY, WANG YN, WU YZ, LIN PC, XIONG L, LIN S. Bioactive neolignans and lignans from the roots of Paeonia lactiflora. Chin J Nat Med 2022; 20:210-214. [DOI: 10.1016/s1875-5364(22)60164-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 11/03/2022]
|
13
|
Li C, Sun CZ, Yang YH, Ma N, Wang YJ, Zhang FX, Pei YH. A novel strategy by integrating chemical profiling, molecular networking, chemical isolation, and activity evaluation to target isolation of potential anti-ACE2 candidates in Forsythiae Fructus. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153888. [PMID: 35026501 DOI: 10.1016/j.phymed.2021.153888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) is regarded as a large database containing hundreds to thousands of chemical constituents that can be further developed as clinical drugs, such as artemisinin in Artemisia annua. However, effectively exploring novel candidates is still a challenge faced by researchers. PURPOSE In this work, an integrated strategy combining chemical profiling, molecular networking, chemical isolation, and activity evaluation (CMCA strategy) was proposed and applied to systematically characterize and screen novel candidates, and Forsythiae fructus (FF) was used as an example. STUDY DESIGN It contained four parts. First, the chemical compounds in FF were detected by ultra-high-performance liquid chromatography-mass spectrometry (UPLC/Q-TOF MS) with data-dependent acquisition, and further, the targeted compounds were screened out based on an in-house database. In the meantime, the representative MS/MS fragmentation behaviors of different chemical structure types were summarized. Second, homologous constituents were grouped and organized based on feature-guided molecular networking, and the nontargeted components with homologous mass fragmentation behaviors were characterized. Third, the novel compounds were isolated and unambiguously identified by nuclear magnetic resonance (NMR). Finally, the anti-angiotensin-converting enzyme 2 (ACE2) activities of isolated chemical constituents were further evaluated by in vitro experiments. RESULTS A total of 278 compounds were profiled in FF, including 151 targeted compounds and 127 nontargeted compounds. Among them, 16 were unambitiously identified by comparison with reference standards. Moreover, 25 were classified into potential novel compounds. Two novel compounds were unambiguously identified by using conventional chromatographic methods, and they were named phillyrigeninside D (peak 254) and forsythenside O (peak 155). Furthermore, the ACE2 activity of the compounds in FF was evaluated by modern pharmacological methods, and among them, suspensaside A was confirmed to present obvious anti-ACE2 activity. CONCLUSION Our work provides meaningful information for revealing potential FF candidates for the treatment of COVID-19, along with new insight for exploring novel candidates from complex systems.
Collapse
Affiliation(s)
- Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chen-Zhi Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yi-Hui Yang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Nan Ma
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Ya-Jing Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
14
|
Meso-Dihydroguaiaretic Acid Ameliorates Acute Respiratory Distress Syndrome through Inhibiting Neutrophilic Inflammation and Scavenging Free Radical. Antioxidants (Basel) 2022; 11:antiox11010123. [PMID: 35052627 PMCID: PMC8772954 DOI: 10.3390/antiox11010123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/19/2022] Open
Abstract
The pathogenesis of acute respiratory distress syndrome (ARDS) is very complex. Patients with ARDS still suffer high mortality rates. Infiltration and activation of neutrophils in lungs are critical pathogenic factors in ARDS. In this study, we demonstrate that meso-dihydroguaiaretic acid (MDGA), a natural lignan, inhibits inflammatory responses in human neutrophils and ameliorates ARDS in mice. MDGA inhibited superoxide anion generation and elastase release in various G-protein coupled receptor agonists-induced human neutrophils. However, MDGA did not alter superoxide anion generation and elastase activity in cell-free systems. These results suggest that the anti-inflammatory effects of MDGA are mediated by regulating cellular signals in human neutrophils. In consistent with this, MDGA suppressed phosphorylation of extracellular signal-regulated kinase and c-Jun N-terminal kinase in activated human neutrophils. Moreover, MDGA inhibited CD11b expression and adhesion in activated human neutrophils. Interestingly, MDGA reduced reactive oxygen species (ROS) generation but not superoxide anion generation in protein kinase C (PKC) activator-induced human neutrophils, suggesting that MDGA may also have ROS scavenging ability. Indeed, MDGA showed strong free radical scavenging activity in cell-free assays. Significantly, MDGA suppressed PKC-induced neutrophil extracellular trap formation. Additionally, treatment of MDGA attenuated neutrophil infiltration and lung damage on lipopolysaccharide-induced ARDS in mice. In conclusion, our results demonstrate that MDGA has anti-neutrophilic inflammatory effects and free-radical scavenging activity. We also suggest that MDGA has potential to serve as a lead for developing new therapeutics to treat ARDS.
Collapse
|
15
|
Ma JT, Li DW, Liu JK, He J. Advances in Research on Chemical Constituents and Their Biological Activities of the Genus Actinidia. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:573-609. [PMID: 34595735 PMCID: PMC8599787 DOI: 10.1007/s13659-021-00319-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 05/03/2023]
Abstract
Kiwi, a fruit from plants of the genus Actinidia, is one of the famous fruits with thousand years of edible history. In the past twenty years, a great deal of research has been done on the chemical constituents of the Actinidia species. A large number of secondary metabolites including triterpenoids, flavonoids, phenols, etc. have been identified from differents parts of Actinidia plants, which exhibited significant in vitro and in vivo pharmacological activities including anticancer, anti-inflammatory, neuroprotective, anti-oxidative, anti-bacterial, and anti-diabetic activities. In order to fully understand the chemical components and biological activities of Actinidia plants, and to improve their further research, development and utilization, this review summarizes the compounds extracted from different parts of Actinidia plants since 1959 to 2020, classifies the types of constituents, reports on the pharmacological activities of relative compounds and medicinal potentials.
Collapse
Affiliation(s)
- Jin-Tao Ma
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Da-Wei Li
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China
| | - Juan He
- School of Pharmaceutical Sciences, National Demonstration Center for Experimental Ethnopharmacology Education, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
16
|
Liu D, Du KC, Wang AD, Meng DL, Li JL. Secondary Metabolites from the Fresh Leaves of Pinus yunnanensis Franch. Chem Biodivers 2021; 19:e202100707. [PMID: 34741384 DOI: 10.1002/cbdv.202100707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/05/2021] [Indexed: 11/07/2022]
Abstract
Fifteen metabolites, including two flavonols (1-2), three lignans (3-5), and ten diterpenoids (6-15), were isolated from the leaves of Pinus yunnanensis. Among them, flavanonol (1) were identified as undescribed flavonol derivative with natural rarely B-ring fission lactone. Massive spectroscopic methods, the DP4+ probabilities and CD/ECD calculations were applied to establish the structure of component 1. Among these compounds, taxifolin (2) showed potent cytotoxicity, having IC50 values from 21.33 to 45.48 μg/mL, it also showed broad antibacterial activity against human pathogens with MIC values from 32 to 64 μg/mL.
Collapse
Affiliation(s)
- Di Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Kai-Cheng Du
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - An-Dong Wang
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Da-Li Meng
- School of Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jian Lin Li
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
17
|
Tissue-Specific Accumulation and Isomerization of Valuable Phenylethanoid Glycosides from Plantago and Forsythia Plants. Int J Mol Sci 2021; 22:ijms22083880. [PMID: 33918622 PMCID: PMC8069251 DOI: 10.3390/ijms22083880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 03/28/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022] Open
Abstract
A comparative phytochemical study on the phenylethanoid glycoside (PhEG) composition of the underground organs of three Plantago species (P. lanceolata, P. major, and P. media) and that of the fruit wall and seed parts of Forsythia suspensa and F. europaea fruits was performed. The leaves of these Forsythia species and six cultivars of the hybrid F. × intermedia were also analyzed, demonstrating the tissue-specific accumulation and decomposition of PhEGs. Our analyses confirmed the significance of selected tissues as new and abundant sources of these valuable natural compounds. The optimized heat treatment of tissues containing high amounts of the PhEG plantamajoside (PM) or forsythoside A (FA), which was performed in distilled water, resulted in their characteristic isomerizations. In addition to PM and FA, high amounts of the isomerization products could also be isolated after heat treatment. The isomerization mechanisms were elucidated by molecular modeling, and the structures of PhEGs were identified by nuclear magnetic resonance spectroscopy (NMR) and high-resolution mass spectrometry (HR-MS) techniques, also confirming the possibility of discriminating regioisomeric PhEGs by tandem MS. The PhEGs showed no cytostatic activity in non-human primate Vero E6 cells, supporting their safe use as natural medicines and allowing their antiviral potency to be tested.
Collapse
|
18
|
Tong C, Chen T, Chen Z, Wang H, Wang X, Liu F, Dai H, Wang X, Li X. Forsythiaside a plays an anti-inflammatory role in LPS-induced mastitis in a mouse model by modulating the MAPK and NF-κB signaling pathways. Res Vet Sci 2021; 136:390-395. [PMID: 33799169 DOI: 10.1016/j.rvsc.2021.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/23/2021] [Indexed: 11/29/2022]
Abstract
Forsythiaside A, a major bioactive component extracted from Forsythiae fructus, possesses multiple biological properties, especially anti-inflammatory properties. In the present study, the anti-inflammatory effect of forsythiaside A was investigated in lipopolysaccharide (LPS)-induced acute mastitis in mice. Our results showed that the expression levels of IL-1β, IL-6, TNF-α, p38 MAPK, IκBα, and NF-κB p65 in the LPS group were all up-regulated, and obvious pathological changes were observed by sectioning. Compared with those in the LPS group, the expression levels of the above factors were significantly reduced, and the inflammation symptoms were also significantly reduced by section observation after forsythiaside A intervention. These results indicated that forsythiaside A effectively inhibited LPS-induced mammary inflammation in mice by attenuating the activation of the NF-κB and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Chao Tong
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Wuhu Overseas Student Pioneer Park, Wuhu 241006, China
| | - Tong Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Zewen Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuefang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China
| | - Fang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Hongyu Dai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China
| | - Xuebing Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450000, Henan province, PR China; Key Laboratory for Animal-Derived Food Safety of Henan province, Zhengzhou 450000, Henan Province, PR China.
| | - Xiao Li
- Biotechnology Developing Center of Henan Academy of Sciences, Henan Academy of sciences, Zhengzhou 450002, Henan Province, PR China.
| |
Collapse
|
19
|
Liu Y, Zhao J, Guo Y, Wang M, Li X, Zhang B. Mutagenic and teratogenic toxicity evaluation of Forsythia suspensa leaves aqueous extract. Drug Chem Toxicol 2021; 45:1825-1832. [PMID: 33588684 DOI: 10.1080/01480545.2021.1883645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Forsythia suspensa leaves (FSL), rich in phillyrin, forsythiaside A, phillygenin, rutin, and other compounds, is a known traditional Chinese medicine (TCM). It has been effective in heat retreat and detoxification. In this study, we performed the mutagenic and teratogenic toxicity evaluation of FSL aqueous extract (FSLAE) using the bacterial reverse mutation assay (Ames test), mouse bone marrow micronucleus assay, spermatocyte chromosomal aberration assay in mice. Kunming mice and SD rats were used were for the mutagenic and the teratogenic studies, respectively. We found that FSLAE was not mutagenic and did not induce unfavorable chromosomal events. Additionally, the Ames test revealed FSLAE was not genotoxic and showed no mutagenic activity in histidine dependent strains of Salmonella typhimurium at concentrations up to 5000 μg/plate. Likewise, in vivo test revealed no induced micronucleus of mouse bone marrow or chromosome aberration in spermatocytes up to the dose of 10.00 g/kg BW. For the teratogenic evaluations, pregnant rats were treated with 1.04, 2.08, and 4.17 g/kg FSL, and fetuses were examined on the 6-15 day of pregnancy. We observed no maternal toxicity and embryotoxicity related to the treatment. Based on these in vitro and in vivo studies, we concluded the genotoxic and teratogenic safety of FSL.
Collapse
Affiliation(s)
- Yinlu Liu
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Jian Zhao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Yu Guo
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| | - Meng Wang
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Xiaoyan Li
- Shijiazhuang Yiling Pharmaceutical Co., Ltd, Shijiazhuang, China
| | - Bo Zhang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, China
| |
Collapse
|
20
|
Ma N, Sun C, Wei Q, Wang Y, Yan X, Li C, Pei Y. A new diterpernoid glycoside from the fruit of Forsythia suspensa. Nat Prod Res 2020; 36:3474-3479. [PMID: 33342282 DOI: 10.1080/14786419.2020.1861616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
One new diterpernoid glycoside, lanceolatinoside A (1), together with one known iridoid glycoside, luzonoside C (2) were isolated from the fruit of Forsythia suspensa. The structure of the new compound (1) was elucidated through 1 D and 2 D NMR spectroscopic data, and HR-ESIMS. Compound 2 was identified as luzonoside C (2) on the basis of NMR spectroscopic data analyses and comparison with those reported in the literature.
Collapse
Affiliation(s)
- Nan Ma
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Chenzhi Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Qian Wei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China.,Department of Pharmacy, Ruijin Hospital, School of medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yajing Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Xinjia Yan
- College of Pharmacy, HarBin University of Commerce, HarBin, People's Republic of China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Yuehu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| |
Collapse
|
21
|
Li JL, Wie LL, Chen C, Liu D, Gu YQ, Duan-Mu JX, Chen GT, Song Y. Bioactive Constituents from the Bryophyta Hypnum plumaeforme. Chem Biodivers 2020; 17:e2000552. [PMID: 33098214 DOI: 10.1002/cbdv.202000552] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
Chemical investigation of the secondary metabolites of the whole plant of bryophyte Hypnum plumaeforme Wilson led to the isolation of a new pimarane-type diterpenoid, momilactone F (1), along with seventeen known compounds. Their chemical structures were elucidated based on massive spectroscopic data. The allelopathic and antifungal properties were evaluated. Among them, momilactone F (1), acrenol (2),[11] momilactones A (3) and B (4) showed significant allelopathic activity against Samolus parviflorus Raf. and Lactuca sativa L. var. angustana Irish, as well as selected antifungal property against crop pathogenic fungi strains. On the other hand, 8(14)-podocarpen-13-on-18-oic acid (8) exhibited strong promoting activity on the growth of L. sativa L. var. angustana Irish. The present investigation provided new insights for developing of H. plumaeforme for further application as a potential agricultural tool.
Collapse
Affiliation(s)
- Jian-Lin Li
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Lai-Lai Wie
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Chen Chen
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Di Liu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yu-Qin Gu
- Department of Pharmacy, Dongtai People's Hospital, Yancheng Shi, Dongtai, 224200, P. R. China
| | - Jia-Xin Duan-Mu
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Guang-Tong Chen
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| | - Yan Song
- School of Pharmacy, Nantong University, Nantong, 226001, P. R. China
| |
Collapse
|
22
|
Li SL, Wu HC, Hwang TL, Lin CH, Yang SS, Chang HS. Phytochemical Investigation and Anti-Inflammatory Activity of the Leaves of Machilus japonica var. kusanoi. Molecules 2020; 25:molecules25184149. [PMID: 32927887 PMCID: PMC7570621 DOI: 10.3390/molecules25184149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 12/05/2022] Open
Abstract
In a series of anti-inflammatory screenings of lauraceous plants, the methanolic extract of the leaves of Machilus japonica var. kusanoi (Hayata) J.C. Liao showed potent inhibition on both superoxide anion generation and elastase release in human neutrophils. Bioassay-guided fractionation of the leaves of M. japonica var. kusanoi led to the isolation of twenty compounds, including six new butanolides, machinolides A–F (1–6), and fourteen known compounds (7–20). Their structures were characterized by 1D and 2D NMR, UV, IR, CD, and MS data. The absolute configuration of the new compounds were unambiguously confirmed by single-crystal X-ray diffraction analyses (1, 2, and 3) and Mosher’s method (4, 5, and 6). In addition, lignans, (+)-eudesmin (11), (+)-methylpiperitol (12), (+)-pinoresinol (13), and (+)-galbelgin (16) exhibited inhibitory effects on N-formyl-methionyl-leucyl-phenylalanine/cytochalasin B (fMLP/CB)-induced superoxide anion generation in human neutrophils with IC50 values of 8.71 ± 0.74 μM, 2.23 ± 0.92 μM, 6.81 ± 1.07 μM, and 7.15 ± 2.26 μM, respectively. The results revealed the anti-inflammatory potentials of Formosan Machilus japonica var. kusanoi.
Collapse
Affiliation(s)
- Shiou-Ling Li
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-L.L.); (S.-S.Y.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Ho-Cheng Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
- Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chu-Hung Lin
- Botanical Drug Technology Division, Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan;
| | - Shuen-Shin Yang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-L.L.); (S.-S.Y.)
| | - Hsun-Shuo Chang
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (S.-L.L.); (S.-S.Y.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Correspondence: ; Tel.: +886-7-312-1101 (ext. 2664)
| |
Collapse
|
23
|
Wei Q, Wang Q, Sun CZ, Yu TY, Yan XJ, Li J, Wei J, Li C, Pei YH. Two new furofuran lignan glycoside derivatives from the fruit of Forsythia suspensa. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2020; 22:803-809. [PMID: 31588784 DOI: 10.1080/10286020.2019.1666823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Phytochemical investigation of 95% ethanol extract of the fruit of Forsythia suspensa resulted in the isolation of two new furofuran lignan glycoside derivatives pinoresinoside A (1) and phillyrigeninside A (2), along with three known ones. Their structures were established based on extensive spectroscopic data analyses and comparison with literature data. Absolute configuration of 1 was determined by CD method. In addition, compounds 1 and 2 were revealed to show in vitro cytotoxicity against human tumor cell lines (SGC-7901, MCF-7 and HepG2), with IC50 values ranging from 16.77 to 37.35 µM. [Formula: see text].
Collapse
Affiliation(s)
- Qian Wei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Qin Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Chen-Zhi Sun
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Tian-Yi Yu
- First Affiliated Hospital, Hei Long Jiang University of Chinese Medicine, Harbin 150040, China
| | - Xin-Jia Yan
- College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Jun Li
- Engineering Research Center for Medicine, College of Pharmacy, Harbin University of Commerce, Harbin 150076, China
| | - Jie Wei
- Department of Genetics, College of Life Science, Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yue-Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
24
|
Xiang KL, Liu RX, Zhao L, Xie ZP, Zhang SM, Dai SJ. Labdane diterpenoids from Forsythia suspensa with anti-inflammatory and anti-viral activities. PHYTOCHEMISTRY 2020; 173:112298. [PMID: 32070801 DOI: 10.1016/j.phytochem.2020.112298] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
Five previously undescribed labdane diterpenoids, named Forsypensins A-E, were isolated from the fruits of Forsythia suspensa. The structures and relative configurations of the compounds were elucidated via extensive spectroscopic methods, and their absolute configurations were fully confirmed by single crystal X-ray diffraction analyses using Cu Kα radiation and electronic circular dichroism data. The five labdane diterpenoids showed in vitro anti-inflammatory activity in rat polymorphonuclear leukocytes, inhibiting the rates of β-glucuronidase release by 43.6%-49.2% at concentrations of 10 μM. The compounds also had anti-viral activity against influenza A (H1N1) virus and respiratory syncytial virus (RSV), with IC50 values in the range 21.8-27.4 μM, and EC50 values in the range 10.5-15.4 μM, respectively.
Collapse
Affiliation(s)
- Kang-Lin Xiang
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong-Xia Liu
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Lin Zhao
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China
| | - Ze-Ping Xie
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Shu-Min Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Sheng-Jun Dai
- School of Pharmaceutical Science, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
25
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
26
|
Zhou D, Li Y, Chen G, Yang Y, Mi Y, Lin B, Li W, Hou Y, Li N. Structural elucidation and anti-neuroinflammatory activities of lignans from the testas of Vernicia montana. Bioorg Chem 2020; 97:103690. [DOI: 10.1016/j.bioorg.2020.103690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/06/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
|
27
|
Shin S, Yi JM, Kim NS, Kim SH. Aqueous extract of Forsythia viridissima fruits: Acute oral toxicity and genotoxicity studies. JOURNAL OF ETHNOPHARMACOLOGY 2020; 249:112381. [PMID: 31715286 DOI: 10.1016/j.jep.2019.112381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythia viridissima fruit, one of Forsythiae Fructus (FF) is widely used in traditional medicine to treat diverse diseases-related clinical symptoms, including fever, pain, vomiting, nausea, and abscess. However, the safety of FF has not been fully assessed. AIM OF THE STUDY In this study, we evaluated the acute oral toxicity and genotoxic potential of an aqueous extract of Forsythia viridissima fruits (EFVF). MATERIALS AND METHODS For an acute oral toxicity test, male and female SD rats (n = 5) orally received a single dose of 5000 mg/kg EFVF. The genotoxic potential of EFVF was evaluated with a battery of tests, including an in vitro bacterial reverse mutation test using five mutant strains of Salmonella typhimurium (TA100, TA1535, TA98, TA1537) and Escherichia coli (WP2 uvrA), an in vitro chromosomal aberration test using Chinese hamster lung (CHL/IU) cells, and an in vivo micronucleus test using bone marrow cells in male ICR mice that were orally administered EFVF. All tests were completed in compliance with Organization for Economic Cooperation and Development guidelines and/or regional regulatory standards for toxicity tests. RESULTS In the acute oral toxicity test, the animals did not show any significant mortality and body weight changes for 14 days following a single dose of EFVF at 5000 mg/kg. There was no evidence of genotoxicity of EFVF based on the results of the in vitro bacterial reverse mutation test (up to 5000 μg/plate), the in vivo micronucleus test (up to 5000 mg/kg), and the in vitro chromosomal aberration test (1100-2500 μg/mL). CONCLUSIONS We found that EFVF is safe with regard to acute toxicity in rats as well as genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of EFVF as a potential therapeutic material for the traditional use or pharmaceutical development.
Collapse
Affiliation(s)
- Sarah Shin
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Jin-Mu Yi
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - No Soo Kim
- Clinical Medicine Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu, Daejeon, 34054, Republic of Korea.
| | - Su-Hwan Kim
- Nonclinical Research Institute, Biotoxtech Co., Ltd., 53 Yeongudanji-ro, Cheongwon-gu, Cheongju-si, Cheungcheongbuk-do, 28115, Republic of Korea.
| |
Collapse
|
28
|
Zhao L, Xiang KL, Liu RX, Xie ZP, Zhang SM, Dai SJ. Anti-inflammatory and anti-viral labdane diterpenoids from the fruits of Forsythia suspensa. Bioorg Chem 2020; 96:103651. [DOI: 10.1016/j.bioorg.2020.103651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/19/2020] [Accepted: 02/03/2020] [Indexed: 11/25/2022]
|
29
|
Wang L, Yan W, Tian Y, Xue H, Tang J, Zhang L. Self-Microemulsifying Drug Delivery System of Phillygenin: Formulation Development, Characterization and Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E130. [PMID: 32028742 PMCID: PMC7076376 DOI: 10.3390/pharmaceutics12020130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 01/16/2020] [Accepted: 01/28/2020] [Indexed: 01/20/2023] Open
Abstract
Phillygenin, as an active ingredient of Forsythia suspensa, possesses a wide range of biological and pharmacological activity. However, its development and application are restricted due to its poor bioavailability and low solubility. Our work aimed to develop a self-microemulsifying drug delivery system to improve the oral bioavailability of phillygenin. The composition of the self-microemulsifying drug delivery system was preliminary screened by the pseudo-ternary phase diagram. Subsequently, the central composite design method was employed to optimize the prescription of the self-microemulsifying drug delivery system loaded with phillygenin. The prepared self-microemulsifying drug delivery system of phillygenin was characterized in terms of morphology, droplet size distribution, polydispersity index and stability. Then, the in vitro dissolution and the oral bioavailability were analyzed. The optimized self-microemulsifying drug delivery system of phillygenin consisted of 27.8% Labrafil M1944CS, 33.6% Cremophor EL, 38.6% polyethylene glycol 400 (PEG-400) and 10.2 mg/g phillygenin loading. The prepared self-microemulsifying drug delivery system of phillygenin exhibited spherical and uniform droplets with small size (40.11 ± 0.74 nm) and satisfactory stability. The in vitro dissolution experiment indicated that the cumulative dissolution rate of the self-microemulsifying drug delivery system of phillygenin was significantly better than that of free phillygenin. Furthermore, after oral administration in rats, the bioavailability of phillygenin was significantly enhanced by the self-microemulsifying drug delivery system. The relative bioavailability of the self-microemulsifying drug delivery system of phillygenin was 588.7% compared to the phillygenin suspension. These findings suggest that the self-microemulsifying drug delivery system of phillygenin can be a promising oral drug delivery system to improve the absorption of phillygenin.
Collapse
Affiliation(s)
- Lingzhi Wang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Wenrui Yan
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| | - Yurun Tian
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Huanhuan Xue
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Jiankai Tang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China;
| | - Liwei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China; (L.W.); (W.Y.); (H.X.); (J.T.)
| |
Collapse
|
30
|
Shao S, Yang Y, Feng Z, Jiang J, Zhang P. New triacetic acid lactone glycosides from the fruits of Forsythia suspensa and their nitric oxide production inhibitory activity. Carbohydr Res 2020; 488:107908. [DOI: 10.1016/j.carres.2020.107908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/28/2019] [Accepted: 01/05/2020] [Indexed: 01/25/2023]
|
31
|
Chiang CC, Cheng WJ, Lin CY, Lai KH, Ju SC, Lee C, Yang SH, Hwang TL. Kan-Lu-Hsiao-Tu-Tan, a traditional Chinese medicine formula, inhibits human neutrophil activation and ameliorates imiquimod-induced psoriasis-like skin inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2020; 246:112246. [PMID: 31539577 DOI: 10.1016/j.jep.2019.112246] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/05/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kan-Lu-Hsiao-Tu-Tan (KLHTT) is a popular traditional Chinese medicine for treating various inflammatory diseases. AIM OF THE STUDY The aim of the present study was to investigate the anti-inflammatory effects of KLHTT on human neutrophils and its therapeutic potential in treating imiquimod (IMQ)-induced psoriasis-like skin inflammation. MATERIALS AND METHODS Spectrophotometry, flow cytometry, and microscopy with immunohistochemical staining were used to evaluate superoxide anion generation, elastase release, CD11b expression, adhesion, and neutrophil extracellular trap (NET) formation in activated human neutrophils. Reactive oxygen species (ROS) and reactive nitrogen species in cell-free systems were measured using a multi-well fluorometer or a spectrophotometer. A psoriasis-like skin inflammation was induced in mice using the IMQ cream. RESULTS KLHTT suppressed superoxide anion generation, ROS production, CD11b expression, and adhesion in activated human neutrophils. In contrast, KLHTT failed to alter elastase release in activated human neutrophils. Additionally, KLHTT had an ROS-scavenging effect in the AAPH assay, but it did not scavenge superoxide anions directly in the xanthine/xanthine oxidase assay. Protein kinase C (PKC)-induced NET formation most commonly occurs through ROS-dependent mechanisms. KLHTT significantly inhibited phorbol 12-myristate 13-acetate, a PKC activator, inducing NET formation. Furthermore, topical KLHTT treatment reduced the area affected by psoriasis area and severity index (PASI) score and ameliorated neutrophil infiltration in IMQ-induced psoriasis-like skin inflammation in mice. CONCLUSIONS Our data show that KLHTT has anti-neutrophilic inflammatory effects in inhibiting ROS generation and cell adhesion. KLHTT also mitigated NET formation, mainly via an ROS-dependent pathway. In addition, KLHTT reduced neutrophil infiltration and improved the severity of IMQ-induced psoriasis-like skin inflammation in mice. Therefore, KLHTT may prove to be a safe and effective psoriasis therapy in the future.
Collapse
Affiliation(s)
- Chih-Chao Chiang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Supervisory Board, Taoyuan Chinese Medicine Association, Taoyuan, 338, Taiwan; Puxin Fengze Chinese Medicine Clinic, Taoyuan, 326, Taiwan.
| | - Wei-Jen Cheng
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Cheng-Yu Lin
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Kuei-Hung Lai
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan.
| | - Seanson-Chance Ju
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Chuan Lee
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Sien-Hung Yang
- Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; School of Traditional Chinese Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
32
|
Tai SH, Kuo PC, Hung CC, Lin YH, Hwang TL, Lam SH, Kuo DH, Wu JB, Hung HY, Wu TS. Bioassay-guided purification of sesquiterpenoids from the fruiting bodies of Fomitopsis pinicola and their anti-inflammatory activity. RSC Adv 2019; 9:34184-34195. [PMID: 35530004 PMCID: PMC9073629 DOI: 10.1039/c9ra05899k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/12/2019] [Indexed: 11/21/2022] Open
Abstract
Twelve undescribed sesquiterpenoids, fomitopins A-L (1-12), were isolated via bioassay-guided purification from the bracket fungus Fomitopsis pinicola (Sw.) P. Karst, and this fungus have been reported to exhibit anti-microbial and anti-inflammatory activities. The structures of 1-12 were elucidated by spectroscopic and spectrometric analyses and their absolute configurations were further confirmed by ECD simulations. Ten isolated compounds were evaluated for their anti-inflammatory potential and compound 11 exhibited the most significant inhibition of superoxide anion generation and elastase release with IC50 values of 0.81 ± 0.15 and 0.74 ± 0.12 μM. These newly purified sesquiterpenoids could be potential candidates for further anti-inflammatory studies.
Collapse
Affiliation(s)
- Shih-Huang Tai
- Departments of Surgery and Anesthesiology, Institute of Biomedical Engineering, National Cheng Kung University, Medical Center and Medical School Tainan 701 Taiwan
| | - Ping-Chung Kuo
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 70101 Taiwan +886-6-2740552 +886-6-2373149 +886-6-2747538 +886-6-2353535 ext. 6803
| | - Ching-Che Hung
- Department of Chemistry, National Cheng Kung University Tainan 70101 Taiwan
| | - Ying-Hsuan Lin
- Department of Environmental Sciences, University of California Riverside California 92521 USA
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Department of Anesthesiology, Chang Gung Memorial Hospital Taoyuan 333 Taiwan
| | - Sio Hong Lam
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 70101 Taiwan +886-6-2740552 +886-6-2373149 +886-6-2747538 +886-6-2353535 ext. 6803
| | - Daih-Huang Kuo
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University Pingtung 907 Taiwan
| | - Jin-Bin Wu
- Jen-Li Biotechnology Company Taichung Taiwan
| | - Hsin-Yi Hung
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 70101 Taiwan +886-6-2740552 +886-6-2373149 +886-6-2747538 +886-6-2353535 ext. 6803
| | - Tian-Shung Wu
- School of Pharmacy, College of Medicine, National Cheng Kung University Tainan 70101 Taiwan +886-6-2740552 +886-6-2373149 +886-6-2747538 +886-6-2353535 ext. 6803
- Department of Pharmacy, College of Pharmacy and Health Care, Tajen University Pingtung 907 Taiwan
| |
Collapse
|
33
|
Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur J Med Chem 2019; 179:272-309. [PMID: 31255927 DOI: 10.1016/j.ejmech.2019.06.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammation is a biological function which triggered after the mechanical tissue disruption or from the responses by the incidence of physical, chemical or biological negotiator in body. These responses are essential act provided by the immune system during infection and tissue injury to maintain normal tissue homeostasis. Inflammation is a quite complicated process at molecular level with the involvement of several proinflammatory expressions. Several health problems are associated with prolonged inflammation, which effects nearly all major to minor diseases. The molecular and epidemiological studies jagged that the inflammation is closely associated with several disorders with their specific targets. It would be great achievement for human health around the world to overcome on inflammation. Mostly used anti-inflammatory drugs are at high risk of side effects and also expensive. Hence, the plant-based formulations gained a wide acceptance by the public and medical experts to treat it. Due to extensive dispersal, chemical diversity and systematically established biological potentials of natural products have induced renewed awareness as a gifted source for medications. However, today's urgent need to search for cheaper, more potent and safe anti-inflammatory medications to overcome on current situation. The goal of this review to compile an update on inflammation, associated diseases, molecular targets, inflammatory mediators and role of natural products. The entire text concise the involvement of various cytokines in pathogenesis of various human disorders. This assignment discussed about 321 natural products with their promising anti-inflammatory potential discovered during January 2009 to December 2018 with 262 citations.
Collapse
|
34
|
Zhang DY, Wang XX, Zhuang PY, Feng YJ, Jin XY. Sesquiterpenoids and lignans from the fruits of Illicium simonsii Maxim. BIOCHEM SYST ECOL 2019. [DOI: 10.1016/j.bse.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Neuroprotective Effects of an Aqueous Extract of Forsythia viridissima and Its Major Constituents on Oxaliplatin-Induced Peripheral Neuropathy. Molecules 2019; 24:molecules24061177. [PMID: 30934631 PMCID: PMC6471886 DOI: 10.3390/molecules24061177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/21/2022] Open
Abstract
The dried fruits of Forsythia viridissima have been prescribed to relive fever, pain, vomiting, and nausea in traditional medicine. Oxaliplatin (LOHP) is used to treat advanced colorectal cancer; however, it frequently induces peripheral neuropathies. This study was done to evaluate the neuroprotective effects of an aqueous extract of Forsythia viridissima fruits (EFVF) and its major constituents. Chemical constituents from EFVF were characterized and quantified with the UHPLC-diode array detector method, and three major constituents were identified as arctiin, matairesinol, and arctigenin. The in vitro cytotoxicity was measured by the Ez-cytox viability assay, and the in vivo neuroprotection activity was evaluated by a von Frey test in two rodent animal models that were administered LOHP. EFVF significantly alleviated the LOHP-induced mechanical hypersensitivity in the induction model. EFVF also prevented the induction of mechanical hyperalgesia by LOHP in the pre- and co-treatment of LOHP and EFVF. Consistently, EFVF exerted protective effects against LOHP-induced neurotoxicity as well as inhibited neurite outgrowths in PC12 and dorsal root ganglion cells. Among the major components of EFVF, arctigenin and matairesinol exerted protective effects against LOHP-induced neurotoxicity. Therefore, EFVF may be useful for relieving or preventing LOHP-induced peripheral neuropathy in cancer patients undergoing chemotherapy with LOHP.
Collapse
|
36
|
Wei Q, Zhang R, Wang Q, Yan XJ, Yu QW, Yan FX, Li C, Pei YH. Iridoid, phenylethanoid and flavonoid glycosides from Forsythia suspensa. Nat Prod Res 2019; 34:1320-1325. [PMID: 30676780 DOI: 10.1080/14786419.2018.1560288] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
As part of our continuing efforts to explore bioactive compounds from natural resources, a new iridoid glycoside, adoxosidic acid-6'-oleuroperic ester (1), together with one known phenylethanoid glycoside (2) and two known flavonoid glycosides (3-4) were isolated from the fruit of Forsythia suspensa. The structure of the new compound (1) was elucidated through 1D and 2D NMR spectroscopic data and HR-ESIMS. Interestingly, compound 1 was a monoterpene ester of one iridoid glycoside. Compounds 2-4 were identified as calceolarioside A (2), kaempferol-3-O-rutinoside (3), kampferol-3-O-robinobioside (4) on the basis of NMR spectroscopic data analyses and comparison with the data reported in the literature. The antiviral activity aganisist influenza A (H5N1) virus of compound 1 was studied as well.
Collapse
Affiliation(s)
- Qian Wei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Rong Zhang
- Department of Pharmacology, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Qin Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Xin Jia Yan
- College of Pharmacy, Harbin University of Commerce, HarBin, People's Republic of China
| | - Quan Wei Yu
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Fu Xia Yan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Chang Li
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| | - Yue Hu Pei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, HarBin Medical University, HarBin, People's Republic of China
| |
Collapse
|
37
|
Hanson JR, Nichols T, Mukhrish Y, Bagley MC. Diterpenoids of terrestrial origin. Nat Prod Rep 2019; 36:1499-1512. [DOI: 10.1039/c8np00079d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review covers the isolation and chemistry of diterpenoids from terrestrial sources from 2017.
Collapse
Affiliation(s)
- James R. Hanson
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Tyler Nichols
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Yousef Mukhrish
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| | - Mark C. Bagley
- Department of Chemistry
- School of Life Sciences
- University of Sussex
- East Sussex
- UK
| |
Collapse
|
38
|
Synthesis of Betulinic Acid Derivatives with Modified A-Rings and their Application as Potential Drug Candidates. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800163] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
39
|
Zhang XT, Ding Y, Kang P, Zhang XY, Zhang T. Forsythoside A Modulates Zymosan-Induced Peritonitis in Mice. Molecules 2018; 23:molecules23030593. [PMID: 29509714 PMCID: PMC6017337 DOI: 10.3390/molecules23030593] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Acute inflammation is a protective response of the host to physical injury and invading infection. Timely treatment of acute inflammatory reactions is essential to prevent damage to organisms that can eventually lead to chronic inflammation. Forsythoside A (FTA), an active constituent of Forsythia suspensa, has been reported to have anti-inflammatory, antioxidant, and antibacterial properties. Despite increasing knowledge of its anti-inflammatory effects, the mechanism and the effects on acute inflammation are poorly understood. This study is aimed at exploring the pro-resolving effects of FTA on zymosan-induced acute peritonitis. FTA significantly alleviated peritonitis as evidenced by the decreased number of neutrophils and levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) in the peritoneal cavity, without interfering with interleukin-10 (IL-10). FTA showed marked regulation of inflammatory cytokines and chemokine levels in zymosan-stimulated RAW 264.7 macrophages. Moreover, FTA could suppress the activation of NF-κB. In conclusion, FTA alleviated zymosan-induced acute peritonitis through inhibition of NF-κB activation.
Collapse
Affiliation(s)
- Xiao-Tian Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Ping Kang
- Headmaster's office, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xin-Yu Zhang
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
40
|
Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei X, Luo J, Shan M, Lin R, Zou D, Ma Z. Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:318-339. [PMID: 28887216 DOI: 10.1016/j.jep.2017.08.040] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 05/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Forsythiae Fructus (called Lianqiao in Chinese), the fruit of Forsythia suspensa (Thunb.) Vahl, is utilized as a common traditional medicine in China, Japan and Korea. It is traditionally used to treat pyrexia, inflammation, gonorrhea, carbuncle and erysipelas. Depending on the different harvest time, Forsythiae Fructus can be classified into two forms, namely Qingqiao and Laoqiao. The greenish fruits that start to ripen are collected as Qingqiao, while the yellow fruits that are fully ripe are collected as Laoqiao. Both are applied to medical use. This review aims to provide a systematic summary of F. suspensa (Forsythia suspensa (Thunb.) Vahl) and to reveal the correlation between the traditional uses and pharmacological activities so as to offer inspiration for future research. MATERIALS AND METHODS All corresponding information about F. suspensa was searched by Scifinder and obtained from scientific databases including Springer, Science Direct, Wiley, Pubmed and China Knowledge Resource Integrated (CNKI). Local dissertations and books were searched as well. RESULTS According to classical Chinese herbal texts and Chinese Pharmacopoeia, Forsythiae Fructus dominantly displays heat-clearing and detoxifying effects in TCM prescriptions. In modern research, more than 230 compounds were separated and identified from F. suspensa. 211 Of them were isolated from fruits. Lignans and phenylethanoid glycosides are considered as the characteristic and active constituents of this herb, such as forsythiaside, phillyrin, rutin and phillygenin. They exhibited anti-inflammatory, antioxidant, antibacterial, anti-virus, anti-cancer and anti-allergy effects, etc. Currently, there is no report on the toxicity of Forsythiae Fructus, despite slight toxicity of forsythiaside reported in local publications. Compared to Laoqiao, Qingqiao contains higher levels of forsythiaside, forsythoside C, cornoside, rutin, phillyrin, gallic acid and chlorogenic acid and lower levels of rengyol, β-glucose and S-suspensaside methyl ether. CONCLUSION Heat-clearing actions of Forsythiae Fructus are based on the anti-inflammatory and antioxidant properties of lignans and phenylethanoid glycosides. Detoxifying effects attribute to the antibacterial, antiviral and anti-cancer activities of Forsythiae Fructus. And traditional Chinese medicine (TCM) characteristics of Forsythiae Fructus (bitter flavor, slightly cold nature and lung meridian) supported its strong anti-inflammatory effects. In addition, the remarkable anti-inflammatory and antioxidant capacities of Forsythiae Fructus contribute to its anti-cancer and neuroprotective activities. The higher proportion of lignans and phenylethanoid glycosides in Qingqiao than Laoqiao might explain the better antioxidant ability of Qingqiao and more frequent uses of Qingqiao in TCM prescriptions. For future research, more in vivo experiments and clinical studies are encouraged to further clarify the relation between traditional uses and modern applications. Regarding to Qingqiao and Laoqiao, they remain to be differentiated by all-round quality control methods, and the chemical compositions and clinical effects between them should be compared.
Collapse
Affiliation(s)
- Zhaoyi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Qing Xia
- Biology Institute of Shandong Academy of Sciences, Key Laboratory for Drug Screening Technology of Shandong Academy of Sciences, Shandong Provincial Engineering Laboratory for Biological Testing Technology, Key Laboratory for Biosensor of Shandong Province, Jinan 250014, China
| | - Xin Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wenxue Liu
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Wanzhen Huang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Xue Mei
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Jun Luo
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Mingxu Shan
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Dixin Zou
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010110, China.
| | - Zhiqiang Ma
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
41
|
Zhao XY, Wang G, Wang Y, Tian XG, Zhao JC, Huo XK, Sun CP, Feng L, Ning J, Wang C, Zhang BJ, Wang X. Chemical constituents from Alisma plantago-aquatica subsp. orientale (Sam.) Sam and their anti-inflammatory and antioxidant activities. Nat Prod Res 2017; 32:2749-2755. [PMID: 28954548 DOI: 10.1080/14786419.2017.1380024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xin-Yu Zhao
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Gang Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Yan Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Chinese People’s Liberation Army 210 Hospital, Dalian, China
| | - Xiang-Ge Tian
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jian-Chao Zhao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiao-Kui Huo
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Cheng-Peng Sun
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Lei Feng
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Jing Ning
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Chao Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Bao-Jing Zhang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
| | - Xun Wang
- College of Pharmacy, College (Institute) of Intergrative Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Nuerosurgery, The Third People’s Hospital of Dalian, Non-directly Affliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Forsythiae Fructus: A Review on its Phytochemistry, Quality Control, Pharmacology and Pharmacokinetics. Molecules 2017; 22:molecules22091466. [PMID: 28869577 PMCID: PMC6151565 DOI: 10.3390/molecules22091466] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Forsythiae Fructus, as a traditional Chinese medicine, has been widely used both as a single herb and in compound prescriptions in Asia, mainly due to its heat-clearing and detoxifying effects. Modern pharmacology has proved Forsythiae Fructus possesses various therapeutic effects, both in vitro and in vivo, such as anti-inflammatory, antibacterial and antiviral activities. Up to now, three hundred and twenty-one compounds have been identified and sensitive analytical methods have been established for its quality control. Recently, the pharmacokinetics of Forsythiae Fructus and its bioactive compounds have been reported, providing valuable information for its clinical application. Therefore, this systematic review focused on the newest scientific reports on Forsythiae Fructus and extensively summarizes its phytochemistry, pharmacology, pharmacokinetics and standardization procedures, especially the difference between the two applied types—unripe Forsythiae Fructus and ripe Forsythiae Fructus—in the hope of providing a helpful reference and guide for its clinical applications and further studies.
Collapse
|