1
|
Peng LF, Fan KQ, Zhou YX, Feng T, Zhan P, Zhou YJ, Deng X. A Dehydrogenative Diels-Alder/Aromatization Sequence to Access 6/6/6/6/5 Pentacyclic Steroids: Their Anti-inflammatory Activities. Org Lett 2025. [PMID: 39910947 DOI: 10.1021/acs.orglett.4c03899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
6/6/6/6/5 Pentacyclic steroids represent an emerging class of architecturally unique and biologically promising steroids. Herein, we developed a DDQ-mediated dehydrogenative Diels-Alder/aromatization cascade reaction between ergosterol derivatives and dienophiles inspired by plausible biosynthetic pathways, which enabled straightforward access to various 6/6/6/6/5 pentacyclic steroids in 24-66% yields. This work offers significant advantages in assembling 6/6/6/6/5 pentacyclic steroids such as the use of inexpensive starting materials, mild reaction conditions, and simple operations. Furthermore, the anti-inflammatory investigations of these steroids on LPS-stimulated RAW264.7 cells led to the discovery of four steroids (i.e., 2h, 4f, 5b, and 5f) as potent anti-inflammatory agents with minimal side effects. This work not only achieves a rapid and biomimetic approach to the unique pentacyclic steroids but also unveils their therapeutic potential in anti-inflammation therapy.
Collapse
Affiliation(s)
- Ling-Fang Peng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Kai-Qiang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Yu-Xing Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
| | - Tao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Ji'nan, Shandong 250012, China
| | - Ying-Jun Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan China
| | - Xu Deng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, Hunan, China
- Hunan Key laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Central South University, Changsha, 410013, Hunan China
| |
Collapse
|
2
|
Niu X, Fan Y, Zou L, Ge G. A Novel Fluorescence-Based Microplate Assay for High-Throughput Screening of hSULT1As Inhibitors. BIOSENSORS 2024; 14:275. [PMID: 38920579 PMCID: PMC11202169 DOI: 10.3390/bios14060275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024]
Abstract
Human sulfotransferase 1As (hSULT1As) play a crucial role in the metabolic clearance and detoxification of a diverse range of endogenous and exogenous substances, as well as in the bioactivation of some procarcinogens and promutagens. Pharmacological inhibiting hSULT1As activities may enhance the in vivo effects of most hSULT1As drug substrates and offer protective strategies against the hSULT1As-mediated bioactivation of procarcinogens. To date, a fluorescence-based high-throughput assay for the efficient screening of hSULT1As inhibitors has not yet been reported. In this work, a fluorogenic substrate (HN-241) for hSULT1As was developed through scaffold-seeking and structure-guided molecular optimization. Under physiological conditions, HN-241 could be readily sulfated by hSULT1As to form HN-241 sulfate, which emitted brightly fluorescent signals around 450 nm. HN-241 was then used for establishing a novel fluorescence-based microplate assay, which strongly facilitated the high-throughput screening of hSULT1As inhibitors. Following the screening of an in-house natural product library, several polyphenolic compounds were identified with anti-hSULT1As activity, while pectolinarigenin and hinokiflavone were identified as potent inhibitors against three hSULT1A isozymes. Collectively, a novel fluorescence-based microplate assay was developed for the high-throughput screening and characterization of hSULT1As inhibitors, which offered an efficient and facile approach for identifying potent hSULT1As inhibitors from compound libraries.
Collapse
Affiliation(s)
| | | | | | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.N.); (Y.F.); (L.Z.)
| |
Collapse
|
3
|
Rinu PXT, Radhika S, Anilkumar G. Recent Applications and Trends in the Julia‐Kocienski Olefination. ChemistrySelect 2022. [DOI: 10.1002/slct.202200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| |
Collapse
|
4
|
Ramesh C, Tulasi BR, Raju M, Thakur N, Dufossé L. Marine Natural Products from Tunicates and Their Associated Microbes. Mar Drugs 2021; 19:308. [PMID: 34073515 PMCID: PMC8228501 DOI: 10.3390/md19060308] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, "tambjamines", produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates' ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- Biological Oceanography Division (BOD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Bhushan Rao Tulasi
- Zoology Division, Sri Gurajada Appa Rao Government Degree College, Yellamanchili 531055, India;
| | - Mohanraju Raju
- Department of Ocean Studies and Marine Biology, Pondicherry Central University, Brookshabad Campus, Port Blair 744102, India;
| | - Narsinh Thakur
- Chemical Oceanography Division (COD), CSIR-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, India;
| | - Laurent Dufossé
- Laboratoire de Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO), Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, Ile de La Réunion, France
| |
Collapse
|
5
|
Abstract
This review covers the literature published between January and December in 2018 for marine natural products (MNPs), with 717 citations (706 for the period January to December 2018) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1554 in 469 papers for 2018), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. The proportion of MNPs assigned absolute configuration over the last decade is also surveyed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia and School of Environment and Science, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Michèle R Prinsep
- Chemistry, School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
6
|
Jennings LK, Prebble DW, Xu M, Ekins MG, Munn AL, Mellick GD, Carroll AR. Anti-prion and α-Synuclein Aggregation Inhibitory Sterols from the Sponge Lamellodysidea cf. chlorea. JOURNAL OF NATURAL PRODUCTS 2020; 83:3751-3757. [PMID: 33269586 DOI: 10.1021/acs.jnatprod.0c01168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In a study aimed at identifying new anti-prion compounds we screened a library of 500 Australian marine invertebrate derived extracts using a yeast-based anti-prion assay. This resulted in an extract from the subtropical sponge Lamellodysidea cf. chlorea showing potent anti-prion activity. The bioassay-guided investigation of the sponge extract led to the isolation of three new bioactive polyoxygenated steroids, lamellosterols A-C (1-3). These sterols were all isolated in low yield, and their structures elucidated by extensive NMR and MS data analysis. Lamellosterols A-C displayed potent anti-prion activity against the [PSI+] yeast prion (EC50s of 12.7, 13.8, and 9.8 μM, respectively). Lamellosterol A (1) was further shown to bind to the Parkinson's disease implicated amyloid protein, α-synuclein, and to significantly inhibit its aggregation. Our findings indicate that these polyoxygenated sterol sulfates may be useful compounds to study mechanisms associated with neurodegenerative diseases.
Collapse
Affiliation(s)
- Laurence K Jennings
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Dale W Prebble
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - Mingming Xu
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | | | - Alan L Munn
- School of Medical Science and Molecular Basis of Disease Program, Menzies Health Institute Queensland, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
| | - George D Mellick
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| | - Anthony R Carroll
- Environmental Futures Research Institute, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- School of Environment and Science, Griffith University (Gold Coast campus), Parklands Drive, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University (Brisbane Innovation Park), Don Young Road, Nathan, QLD 4111, Australia
| |
Collapse
|
7
|
Tsuchikawa H, Oishi T. Chemical Synthesis, Structure Determination, and Evaluation of Biological Activity of Sperm Activating and Attracting Factors Isolated from Ascidias. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hiroshi Tsuchikawa
- Oita University Institute of Advanced Medicine
- Research Promotion Institute, Oita University
| | - Tohru Oishi
- Department of Chemistry, Faculty of Science, Kyushu University
| |
Collapse
|
8
|
Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep 2020; 37:246-275. [DOI: 10.1039/c8np00093j] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review surveys the total syntheses of sulfur-containing natural products where sulfur atoms are introduced with different sulfurization agents to construct related sulfur-containing moieties.
Collapse
Affiliation(s)
- Nengzhong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Puli Saidhareddy
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
9
|
Park S, Cho J, Jeon H, Sung SH, Lee S, Kim S. Expedient Synthesis of Alphitolic Acid and Its Naturally Occurring 2- O-Ester Derivatives. JOURNAL OF NATURAL PRODUCTS 2019; 82:895-902. [PMID: 30768265 DOI: 10.1021/acs.jnatprod.8b00986] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The expedient synthesis of alphitolic acid (1) as well as its natural C-3-epimer and 2- O-ester derivatives was accomplished in a few steps from the readily commercially available betulin (9). A Rubottom oxidation delivered an α-hydroxy group in a stereo- and chemoselective manner. The diastereoselective reduction of the α-hydroxy ketone was key to accessing the 1,2-diol moiety of this class of natural products. Our concise and stereoselective synthetic protocol allowed the gram-scale synthesis of these natural products, which will facilitate future biological evaluations.
Collapse
Affiliation(s)
- Somin Park
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Jihee Cho
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Hongjun Jeon
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Sang Hyun Sung
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Seunghee Lee
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| | - Sanghee Kim
- College of Pharmacy , Seoul National University , 1 Gwanak-ro , Gwanak-gu , Seoul 08826 , Republic of Korea
| |
Collapse
|