1
|
Chen X, Yi P, Lv H, Zhang M, Yang J, Zhang Z, Zhao Z, Mu Y, Han L, Huang X. Phenolics and Phenolic Glycosides from Wrightia pubescens and Their Hepatoprotective Activities. JOURNAL OF NATURAL PRODUCTS 2025; 88:631-643. [PMID: 40013774 DOI: 10.1021/acs.jnatprod.4c01040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Thirty compounds including 13 new phenolic glycosides (1-6, 9-15) and 17 known aromatic compounds and aromatic glycosides (7-8, 16-30) were isolated from the roots of Wrightia pubescens. The structures of the new phenolic glycosides were established by extensive NMR spectroscopic data analysis as well as chemical derivatization method. The isolated compounds were evaluated for their hepatoprotective activities using cell model of acetaminophen (APAP)-induced HepG2 cells. The results indicated that phenolic glycosides (2, 4, 5, 7, 8, 11, 13) pretreatment enhanced the cells viability and reduced the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT). The hepatoprotective mechanism of a representative new compound, wrightioside D (4), was further investigated. Compound 4 exhibited hepatoprotective effects via reducing oxidative stress by attenuating ROS formation and inhibiting apoptosis in APAP-treated HepG2 cells.
Collapse
Affiliation(s)
- Xingxiang Chen
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Ping Yi
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Hang Lv
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Mimi Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Junwei Yang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zengguang Zhang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Zhilong Zhao
- Pharmacological Laboratory, Liaoning Provincial Institute of Drug Inspection and Testing, Shenyang 110036, People's Republic of China
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Li Han
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, People's Republic of China
| |
Collapse
|
2
|
Worayuthakarn R, Suddee N, Theppitak C, Chainok K, Ruchirawat S, Thasana N. Cascade Cyclization of o-(2-Acyl-1-ethynyl)benzaldehydes with Amino Acid Derivatives: Synthesis of Indeno[2,1- c]pyran-3-ones and 1-Oxazolonylisobenzofurans via the Erlenmeyer-Plöchl Azlactone Reaction. ACS OMEGA 2024; 9:37814-37842. [PMID: 39281931 PMCID: PMC11391571 DOI: 10.1021/acsomega.4c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
A highly regioselective divergent approach is reported for the synthesis of both indeno[2,1-c]pyran-3-one and 1-oxazolonylisobenzofuran derivatives using the Erlenmeyer-Plöchl azlactone (EPA) reaction. This approach involves the synthesis of o-(2-acyl-1-ethynyl)benzaldehydes, which reacted with various amino acids. Reaction with N-acylglycines resulted in the formation of indeno[2,1-c]pyran-3-ones, involving the sequential formation of two C-C bonds and two C-O bonds. Conversely, when the same conditions were applied to free amino acids, 1-oxazolonylisobenzofurans were obtained. This reaction involved the formation of a C-C bond between oxazolone and o-(2-acyl-1-ethynyl)benzaldehyde, followed by the formation of a C-O bond through a selective 5-exo-dig cyclization.
Collapse
Affiliation(s)
- Rattana Worayuthakarn
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Nattanit Suddee
- Chemical Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
| | - Chatphorn Theppitak
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Kittipong Chainok
- Thammasat University Research Unit in Multifunctional Crystalline Materials and Applications (TU-MCMA), Faculty of Science and Technology, Thammasat University, Pathum Thani 12121, Thailand
| | - Somsak Ruchirawat
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Education, Science, Research and Innovation, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
- Chemical Sciences Program, Chulabhorn Graduate Institute, Laksi, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Education, Science, Research and Innovation, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Access to N-Fused Quinazolinones by Radical-Promoted Cascade Annulations of Alkenyl N-Cyanamides with Aromatic Aldehydes. J Org Chem 2024; 89:7115-7124. [PMID: 38691342 DOI: 10.1021/acs.joc.4c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A cascade radical cyclization of alkenyl N-cyanamides with aromatic aldehydes has been achieved for an expeditious synthesis of keto-methylated dihydropyrrolo-quinazolinones. Benzoyl radicals, generated from aryl aldehydes in the presence of di-tert-butyl peroxide (DTBP), promoted the domino annulations leading to distinctive functionalized quinazolinones in good yields. In addition, the robustness of the present protocol is validated by employing heterocyclic and natural product-based aldehydes.
Collapse
Affiliation(s)
- Chada Raji Reddy
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anootha Neeliveettil
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Uprety Ajaykumar
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
4
|
Kumar G, C A. Natural products and their analogues acting against Mycobacterium tuberculosis: A recent update. Drug Dev Res 2023; 84:779-804. [PMID: 37086027 DOI: 10.1002/ddr.22063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/28/2023] [Accepted: 04/01/2023] [Indexed: 04/23/2023]
Abstract
Tuberculosis (TB) remains one of the deadliest infectious diseases caused by Mycobacterium tuberculosis (M.tb). It is responsible for significant causes of mortality and morbidity worldwide. M.tb possesses robust defense mechanisms against most antibiotic drugs and host responses due to their complex cell membranes with unique lipid molecules. Thus, the efficacy of existing front-line drugs is diminishing, and new and recurring cases of TB arising from multidrug-resistant M.tb are increasing. TB begs the scientific community to explore novel therapeutic avenues. A precise knowledge of the compounds with their mode of action could aid in developing new anti-TB agents that can kill latent and actively multiplying M.tb. This can help in the shortening of the anti-TB regimen and can improve the outcome of treatment strategies. Natural products have contributed several antibiotics for TB treatment. The sources of anti-TB drugs/inhibitors discussed in this work are target-based identification/cell-based and phenotypic screening from natural products. Some of the recently identified natural products derived leads have reached clinical stages of TB drug development, which include rifapentine, CPZEN-45, spectinamide-1599 and 1810. We believe these anti-TB agents could emerge as superior therapeutic compounds to treat TB over known Food and Drug Administration drugs.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| | - Amrutha C
- Department of Natural Products, Chemical Sciences, National Institute of Pharmaceutical Education and Research-Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Yesiltepe Y, Govind N, Metz TO, Renslow RS. An initial investigation of accuracy required for the identification of small molecules in complex samples using quantum chemical calculated NMR chemical shifts. J Cheminform 2022; 14:64. [PMID: 36138446 PMCID: PMC9499888 DOI: 10.1186/s13321-022-00587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/06/2022] [Indexed: 11/24/2022] Open
Abstract
The majority of primary and secondary metabolites in nature have yet to be identified, representing a major challenge for metabolomics studies that currently require reference libraries from analyses of authentic compounds. Using currently available analytical methods, complete chemical characterization of metabolomes is infeasible for both technical and economic reasons. For example, unambiguous identification of metabolites is limited by the availability of authentic chemical standards, which, for the majority of molecules, do not exist. Computationally predicted or calculated data are a viable solution to expand the currently limited metabolite reference libraries, if such methods are shown to be sufficiently accurate. For example, determining nuclear magnetic resonance (NMR) spectroscopy spectra in silico has shown promise in the identification and delineation of metabolite structures. Many researchers have been taking advantage of density functional theory (DFT), a computationally inexpensive yet reputable method for the prediction of carbon and proton NMR spectra of metabolites. However, such methods are expected to have some error in predicted 13C and 1H NMR spectra with respect to experimentally measured values. This leads us to the question-what accuracy is required in predicted 13C and 1H NMR chemical shifts for confident metabolite identification? Using the set of 11,716 small molecules found in the Human Metabolome Database (HMDB), we simulated both experimental and theoretical NMR chemical shift databases. We investigated the level of accuracy required for identification of metabolites in simulated pure and impure samples by matching predicted chemical shifts to experimental data. We found 90% or more of molecules in simulated pure samples can be successfully identified when errors of 1H and 13C chemical shifts in water are below 0.6 and 7.1 ppm, respectively, and below 0.5 and 4.6 ppm in chloroform solvation, respectively. In simulated complex mixtures, as the complexity of the mixture increased, greater accuracy of the calculated chemical shifts was required, as expected. However, if the number of molecules in the mixture is known, e.g., when NMR is combined with MS and sample complexity is low, the likelihood of confident molecular identification increased by 90%.
Collapse
Affiliation(s)
- Yasemin Yesiltepe
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Niranjan Govind
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Thomas O Metz
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA
| | - Ryan S Renslow
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, USA.
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
6
|
Jannat T, Hossain MJ, El-Shehawi AM, Kuddus MR, Rashid MA, Albogami S, Jafri I, El-Shazly M, Haque MR. Chemical and Pharmacological Profiling of Wrightia coccinea (Roxb. Ex Hornem.) Sims Focusing Antioxidant, Cytotoxic, Antidiarrheal, Hypoglycemic, and Analgesic Properties. Molecules 2022; 27:4024. [PMID: 35807270 PMCID: PMC9268577 DOI: 10.3390/molecules27134024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/17/2022] [Accepted: 06/19/2022] [Indexed: 01/27/2023] Open
Abstract
The aim of the study was to conduct phytochemical and pharmacological investigations of Wrightia coccinea (Roxb. ex Hornem.) Sims via several in vitro, in vivo, and in silico models. A total of four compounds were identified and isolated from the methanol extract of the bark and the methanol extract of the seed pulp of W. coccinea through successive chromatographic techniques and were characterized as 3β-acetyloxy-olean-12-en-28-ol (1), wrightiadione (2), 22β-hydroxylupeol (3), and β-sitosterol (4) by spectroscopic analysis. The aqueous fraction of the bark and chloroform fraction of the fruits provided the most potent antioxidant capacity (IC50 = 7.22 and 4.5 µg/mL, respectively) in DPPH free radical scavenging assay compared with the standard ascorbic acid (IC50 = 17.45 µg/mL). The methanol bark extract and the methanol fruit coat extract exerted anti-diarrheal activity by inhibiting 74.55 ± 0.67% and 77.78 ± 1.5% (mean ± SEM) of the diarrheal episode in mice, respectively, after four hours of loading the samples. In the hypoglycemic test, the methanol bark extract and the methanol fruit coat extract (400 mg/kg) produced a significant (p < 0.05) reduction in the blood glucose level in mice. Both doses of the plant extracts (200 mg/kg and 400 mg/kg) used in the study induced a significant (p < 0.05) increase in pain reaction time. The in vitro and in vivo findings were supported by the computational studies. The isolated compounds exhibited higher binding affinity compared with the standard drugs towards the active binding sites of glutathione reductase, epidermal growth factor receptor (EGFR), kappa opioid receptor, glucose transporter 3 (GLUT 3), Mu opioid receptor, and cyclooxygenase 2 (COX-2) proteins due to their potent antioxidant, cytotoxic, anti-diarrheal, hypoglycemic, and central and peripheral analgesic properties, respectively. The current findings concluded that W. coccinea might be a potential natural source for managing oxidative stress, diarrhea, hyperglycemia, and pain. Further studies are warranted for extensively phytochemical screening and establishing exact mechanisms of action.
Collapse
Affiliation(s)
- Tabassum Jannat
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department Pharmacy, University of Asia Pacific, Dhaka 1205, Bangladesh
| | - Md. Jamal Hossain
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
- Department of Pharmacy, State University of Bangladesh, 77 Satmasjid Road, Dhanmondi, Dhaka 1205, Bangladesh
| | - Ahmed M. El-Shehawi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Md. Ruhul Kuddus
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Mohammad A. Rashid
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Ibrahim Jafri
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (A.M.E.-S.); (S.A.); (I.J.)
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - Mohammad Rashedul Haque
- Phytochemical Research Laboratory, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (T.J.); (M.R.K.); (M.A.R.)
| |
Collapse
|
7
|
Garcia AR, Silva-Luiz YPG, Alviano CS, Alviano DS, Vermelho AB, Rodrigues IA. The Natural Alkaloid Tryptanthrin Induces Apoptosis-like Death in Leishmania spp. Trop Med Infect Dis 2022; 7:tropicalmed7060112. [PMID: 35736990 PMCID: PMC9231190 DOI: 10.3390/tropicalmed7060112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022] Open
Abstract
Leishmaniasis is a vector-borne disease against which there are no approved vaccines, and the treatment is based on highly toxic drugs. The alkaloids consist of a chemical class of natural nitrogen-containing substances with a long history of antileishmanial activity. The present study aimed at determining the antileishmanial activity and in silico pharmacokinetic and toxicological potentials of tryptanthrin alkaloid. The anti-Leishmania amazonensis and anti-L. infantum assays were performed against both promastigotes and intracellular amastigotes. Cellular viability was determined by parasites’ ability to grow (promastigotes) or differentiate (amastigotes) after incubation with tryptanthrin. The mechanisms of action were explored by mitochondrion dysfunction and apoptosis-like death evaluation. For the computational pharmacokinetics and toxicological analysis (ADMET), tryptanthrin was submitted to the PreADMET webserver. The alkaloid displayed anti-promastigote activity against L. amazonensis and L. infantum (IC50 = 11 and 8.0 μM, respectively). Tryptanthrin was active against intracellular amastigotes with IC50 values of 75 and 115 μM, respectively. Mitochondrial membrane depolarization was observed in tryptanthrin-treated promastigotes. In addition, parasites undergoing apoptosis-like death were detected after 18 h of exposure. In silico ADMET predictions revealed that tryptanthrin has pharmacokinetic and toxicological properties similar to miltefosine. The results presented herein demonstrate that tryptanthrin is an interesting drug candidate against leishmaniasis.
Collapse
Affiliation(s)
- Andreza R. Garcia
- Graduate Program in Pharmaceutical Sciences, School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Yasmin P. G. Silva-Luiz
- Graduate Program in Science (Microbiology), Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Celuta S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Daniela S. Alviano
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Alane B. Vermelho
- Department of General Microbiology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (C.S.A.); dani (D.S.A.); (A.B.V.)
| | - Igor A. Rodrigues
- Department of Natural Products and Food, School of Pharmacy, CCS, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Correspondence:
| |
Collapse
|
8
|
Boonsombat J, Thongnest S. Synthesis and Cytotoxic Activity of Wrightiadione and Its Derivatives. HETEROCYCLES 2022. [DOI: 10.3987/com-22-s(r)14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Bowroju SK, Penthala NR, Lakkaniga NR, Balasubramaniam M, Ayyadevara S, Shmookler Reis RJ, Crooks PA. Novel hydroxybenzylamine-deoxyvasicinone hybrids as anticholinesterase therapeutics for Alzheimer's disease. Bioorg Med Chem 2021; 45:116311. [PMID: 34304133 DOI: 10.1016/j.bmc.2021.116311] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/31/2022]
Abstract
A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aβ1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aβ1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aβ1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aβ1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.
Collapse
Affiliation(s)
- Suresh K Bowroju
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Narsimha R Penthala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Naga Rajiv Lakkaniga
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | | | - Srinivas Ayyadevara
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Robert J Shmookler Reis
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States; Central Arkansas Veterans Healthcare Service, Little Rock, AR 72205, United States; BioInformatics Program, University of Arkansas for Medical Sciences and University of Arkansas at Little Rock, Little Rock, AR 72205, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
10
|
Ding Y, Yan H, Chen R, Xiao X, Wang Z, Wang L, Ma Y. Expeditious Approach to Indoloquinazolinones via Double Annulations of o-Aminoacetophenones and Isocyanates. J Org Chem 2021; 86:1448-1455. [PMID: 33373228 DOI: 10.1021/acs.joc.0c02155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel procedure for a one-pot cascade reaction of o-aminoacetophenones and aryl/aliphatic isocyanates catalyzed/oxidized by the [Pd]/[Ag] system was developed. The reaction involves two C-N bond and one C-C bond formations during the double annulation process and the desired indoloquinazolinones and derivatives were afforded up to 81% yields from readily available substrates with a tolerance of a broad variety.
Collapse
Affiliation(s)
- Yuxin Ding
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Huihui Yan
- School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, No. 2318 Yuhangtang Road Hangzhou 311121, P R China
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P R China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P R China
| |
Collapse
|
11
|
Mandigma MJP, Domański M, Barham JP. C-Alkylation of alkali metal carbanions with olefins. Org Biomol Chem 2020; 18:7697-7723. [PMID: 32785363 DOI: 10.1039/d0ob01180k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Alkylations of alkali metal carbanions with olefins, first reported five decades ago, is a class of reaction undergoing a resurgence in organic synthesis in recent years. As opposed to expectations from classical chemistry and transition metal-catalysis, here olefins behave as closed-shell electrophiles. Reactions range from highly reactive alkyllithiums giving rise to anionic polymerization, to moderately reactive alkylpotassium or alkylsodium compounds that give rise to defined, controlled and bimolecular chemistry. This review presents a brief historical overview on C-alkylation of alkali metal carbanions with olefins (typically mediated by KOtBu and KHMDS), highlights contemporary applications and features developing mechanistic understanding, thereby serving as a platform for future studies and the widespread use of this class of reaction in organic synthesis.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany.
| | | | | |
Collapse
|
12
|
Reddy DS, Kutateladze AG. Photoinitiated Cascade for Rapid Access to Pyrroloquinazolinone Core of Vasicinone, Luotonins, and Related Alkaloids. Org Lett 2019; 21:2855-2858. [PMID: 30933523 DOI: 10.1021/acs.orglett.9b00858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Furylimines of aromatic o-nitro aldehydes undergo a photoinduced cascade transformation offering rapid atom- and step-economical access to complex polyheterocyclic scaffolds possessing a privileged pyrroloquinazolinone core.
Collapse
Affiliation(s)
- D Sai Reddy
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States
| | - Andrei G Kutateladze
- Department of Chemistry and Biochemistry , University of Denver , Denver , Colorado 80208 , United States
| |
Collapse
|
13
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as niduterpenoid A from Aspergillus nidulans.
Collapse
|
14
|
An automated framework for NMR chemical shift calculations of small organic molecules. J Cheminform 2018; 10:52. [PMID: 30367288 PMCID: PMC6755567 DOI: 10.1186/s13321-018-0305-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/09/2018] [Indexed: 12/04/2022] Open
Abstract
When using nuclear magnetic resonance (NMR) to assist in chemical identification in complex samples, researchers commonly rely on databases for chemical shift spectra. However, authentic standards are typically depended upon to build libraries experimentally. Considering complex biological samples, such as blood and soil, the entirety of NMR spectra required for all possible compounds would be infeasible to ascertain due to limitations of available standards and experimental processing time. As an alternative, we introduce the in silico Chemical Library Engine (ISiCLE) NMR chemical shift module to accurately and automatically calculate NMR chemical shifts of small organic molecules through use of quantum chemical calculations. ISiCLE performs density functional theory (DFT)-based calculations for predicting chemical properties—specifically NMR chemical shifts in this manuscript—via the open source, high-performance computational chemistry software, NWChem. ISiCLE calculates the NMR chemical shifts of sets of molecules using any available combination of DFT method, solvent, and NMR-active nuclei, using both user-selected reference compounds and/or linear regression methods. Calculated NMR chemical shifts are provided to the user for each molecule, along with comparisons with respect to a number of metrics commonly used in the literature. Here, we demonstrate ISiCLE using a set of 312 molecules, ranging in size up to 90 carbon atoms. For each, calculation of NMR chemical shifts have been performed with 8 different levels of DFT theory, and with solvation effects using the implicit solvent Conductor-like Screening Model. The DFT method dependence of the calculated chemical shifts have been systematically investigated through benchmarking and subsequently compared to experimental data available in the literature. Furthermore, ISiCLE has been applied to a set of 80 methylcyclohexane conformers, combined via Boltzmann weighting and compared to experimental values. We demonstrate that our protocol shows promise in the automation of chemical shift calculations and, ultimately, the expansion of chemical shift libraries.
![]()
Collapse
|