1
|
Nagy B, Maestro A, Pericàs MA, Kappe CO, Ötvös SB. Unlocking the Phosphoric Acid Catalyzed Asymmetric Transfer Hydrogenation of 2-Alkenyl Quinolines for Efficient Flow Synthesis of Hancock Alkaloids. Org Lett 2025; 27:3414-3419. [PMID: 40116823 PMCID: PMC11976859 DOI: 10.1021/acs.orglett.5c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
Chiral tetrahydroquinolines are present in several bioactive molecules, such as the Hancock alkaloids. Although the organocatalytic asymmetric transfer hydrogenation of 2-aryl quinolines has emerged as a safer alternative to using hydrogen gas, analogous reactions with 2-alkenyl quinolines remain unexplored. Here we present a protocol to synthesize key enantioenriched intermediates to the Hancock alkaloids, providing a constant outcome for, at least, a 24 h continuous flow operation.
Collapse
Affiliation(s)
- Bence
S. Nagy
- Institute
of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
| | - Aitor Maestro
- Institute
of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Department
of Organic Chemistry I, University of the
Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
| | - Miquel A. Pericàs
- Universitat
Rovira i Virgili, Departament de Química
Física i Inorgànica, C/Marcel·lí Domingo 1, 43007 Tarragona, Spain
| | - C. Oliver Kappe
- Institute
of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center
Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| | - Sándor B. Ötvös
- Institute
of Chemistry, University of Graz, NAWI Graz, A-8010 Graz, Austria
- Center
for Continuous Flow Synthesis and Processing (CC FLOW), Research Center
Pharmaceutical Engineering GmbH (RCPE), A-8010 Graz, Austria
| |
Collapse
|
2
|
Liu Y, Jin WH, Li RP, Sun HM. Nickel-Catalyzed Linear-Selective C-H Alkylation of N-Heteroarenes with Unactivated α-Olefins. J Org Chem 2025; 90:3053-3061. [PMID: 39960020 DOI: 10.1021/acs.joc.4c02939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
We herein describe the nickel-catalyzed C2-H alkylation of benzothiazoles with unactivated α-olefins by using the Ni(IPr*OMe)[P(OEt)3]Br2/Mg catalytic system in which a variety of linear alkylated benzothiazoles with high regioselectivity were formed under mild reaction conditions. This transformation showed good compatibility to unactivated α-olefins bearing various functional groups, such as esters, acetals, silyl ethers, amines, silanes, and boronate esters. Furthermore, this transformation is also suitable to other typical N-heteroarenes including thiazoles, benzimidazoles, quinazolones, uracils, pyridines, caffeines, and indoles. Thus, this work provides rapid access to diverse linear alkylated N-heteroarenes with good step and atom economy.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wen-Hui Jin
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Rui-Peng Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hong-Mei Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
3
|
Monteferrante OE, Houghtling KE, Kropiwnicki AR, Paradine SM. Urea Ligand-Promoted Chainwalking Heteroannulation for the Synthesis of 6- and 7-membered Azaheterocycles. Chemistry 2024; 30:e202402587. [PMID: 39178046 DOI: 10.1002/chem.202402587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/25/2024]
Abstract
Typical approaches to heterocycle construction require significant changes in synthetic strategy even for a change as minor as increasing the ring size. The ability to access multiple heterocyclic scaffolds through a common synthetic approach, simply through trivial modification of one reaction component, would enable facile access to diverse libraries of structural analogues of core scaffolds. Here, we show that urea-derived ligands effectively promote Pd-mediated chainwalking processes to enable remote heteroannulation for the rapid construction of six- and seven-membered azaheterocycles under essentially identical reaction conditions. This method demonstrates good functional group tolerance and effectively engages sterically hindered substrates. In addition, this reaction is applicable to target-oriented synthesis, demonstrated through the formal synthesis of antimalarial alkaloid galipinine.
Collapse
Affiliation(s)
- Owen E Monteferrante
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Kaitlyn E Houghtling
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Aidan R Kropiwnicki
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| | - Shauna M Paradine
- Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, NY-14627, USA
| |
Collapse
|
4
|
De A, Shukla A, Masood Husain S. One-Pot Multienzyme Cascades for Stereodivergent Synthesis of Tetrahydroquinolines. Angew Chem Int Ed Engl 2024:e202411561. [PMID: 39188019 DOI: 10.1002/anie.202411561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
The tetrahydroquinoline (THQ) framework is commonly found in natural products and pharmaceutically relevant molecules. Apart from using transition metal catalysts and chiral phosphoric acids, the chiral 2-substituted 1,2,3,4-THQs are synthesized using amine oxidase biocatalysts. However, the use of imine reductases (IREDs) in their asymmetric synthesis remained unexplored. In the current work, IREDs are employed in telescopic multienzyme cascades to catalyze the intramolecular reductive amination leading to chiral 2-alkyl and 2-aryl substituted-1,2,3,4-tetrahydroquinolines starting from inexpensive nitroalkenones. The cascades containing NtDBR (an ene reductase), NfsB (a nitro reductase) with either Na2S2O4 or V2O5, various IREDs, and glucose dehydrogenase (for NADPH regeneration) are used to synthesize a broad range of (R)/(S)-2-alkyl-substituted (THQs) (26 examples) with high yield (up to 93 %) and excellent ee (up to 99 %) in one-pot. The method further facilitates the one-pot biocatalytic synthesis of chiral 2-aryl substituted THQs (26 examples) from amino chalcones. Lastly, the asymmetric synthesis of several (R)- and (S)-THQ based intermediates of Hancock alkaloids showed the practical application of the newly developed biocatalytic cascades.
Collapse
Affiliation(s)
- Arijit De
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| | - Ajeet Shukla
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, INDIA
| |
Collapse
|
5
|
Morgan D, Reid CM, Guiry PJ. Enantioselective Copper-Catalyzed Alkynylation of Quinolones Using Chiral P,N Ligands. J Org Chem 2024; 89:1993-2000. [PMID: 37967026 PMCID: PMC10845117 DOI: 10.1021/acs.joc.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Herein we report a catalytic enantioselective alkynylation of quinolones. In this reaction, quinolones are silylated to form a quinolinium ion which then undergoes an enantioselective attack by a copper acetylide, templated by (S,S,Ra)-UCD-Phim. This gives alkynylated products (24 examples) in yields of up to 92% and enantioselectivities of up to 97%. This methodology has been applied to the synthesis of two natural products, (+)-cuspareine and (+)-galipinine.
Collapse
Affiliation(s)
- Dáiríne
M. Morgan
- Centre
for Synthesis and Chemical Biology,
Synthesis and Solid State Pharmaceutical Centre, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cian M. Reid
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology,
Synthesis and Solid State Pharmaceutical Centre, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Mondal A, Phukan HJ, Pal D, Kumar S, Roy M, Srimani D. Well-Defined Mn(II)-complex Catalyzed Switchable De(hydrogenative) Csp 3 -H Functionalization of Methyl Heteroarenes: A Sustainable Approach for Diversification of Heterocyclic Motifs. Chemistry 2024; 30:e202303315. [PMID: 37933814 DOI: 10.1002/chem.202303315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
Catalytic activities of Mn(I) complexes derived from expensive MnBr(CO)5 salt have been explored in various dehydrogenative transformations. However, the reactivity and selectivity of inexpensive high spin Mn(II) complexes are uncommon. Herein, we have synthesized four new Mn(II) complexes and explored switchable alkenylation and alkylation of methyl heteroarenes employing a single Mn(II)catalyst. The developed protocol selectively furnishes a series of functionalized E-heteroarenes and C-alkylated heteroarenes with good to excellent yields. Various medicinally and synthetically useful compounds are successfully synthesized using our developed protocol. Various controls and kinetics experiments were executed to shed light on the mechaism,which reveals that α-C-H bond breaking of alcohol is the slowest step.
Collapse
Affiliation(s)
- Avijit Mondal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Hirak Jyoti Phukan
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Debjyoti Pal
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Saurabh Kumar
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Mithu Roy
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| | - Dipankar Srimani
- Department of Chemistry, Indian Institute of Technology-Guwahati, Kamrup, Assam, 781039, India
| |
Collapse
|
7
|
Wang Y, Li Q, Song X, Wang J, Yin X, Li SS, Wang L. Chemoselective and diastereoselective construction of 4-alkylidene-tetrahydroquinoline via a redox-neutral vinylogous cascade [1,7]-hydride transfer/6- endo-trig cyclization strategy. Org Biomol Chem 2023; 21:4007-4012. [PMID: 37128724 DOI: 10.1039/d3ob00223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Herein, we disclose a chemoselective and diastereoselective synthesis of the medicinally significant 4-alkylidene-tetrahydroquinoline via a redox-neutral vinylogous cascade condensation/[1,7]-hydride transfer/6-endo-trig cyclization strategy, which features a novel product skeleton, high chemoselectivity and diastereoselectivity, facile introduction of 4-alkylidenyl motifs, employment of α,β,γ,δ-unsaturated dicyanoalkenes as novel hydride acceptors, and green and metal-free conditions with water as the only by-product. Additionally, the versatility of α,α-dicyanoalkenes has been fully exploited as hydride acceptors and γ-exclusive nucleophiles consecutively for accessing novel heterocyclic skeletons.
Collapse
Affiliation(s)
- Yufeng Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Qiang Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiaopei Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Jing Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory, The Affiliated Hospital of Qingdao University, Qingdao 266003, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
8
|
Wu S, Cheng X, Yao C, Yang W, Zheng J. Synthesis of CF
3
, CF
2
H‐Substituted, Epoxide‐Fused Heterocycles with Prop‐2‐ynylsulfonium salts. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Affiliation(s)
- Shitong Wu
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Xi Cheng
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Changguang Yao
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Weiran Yang
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| | - Jing Zheng
- School of Chemical and Chemical Engineering NanChang University NanChang 330031 China
| |
Collapse
|
9
|
Seeman JI. Early Champions of Research in Chemistry with Undergraduates: From William Albert Noyes to Percy Lavon Julian. ACS OMEGA 2023; 8:8911-8924. [PMID: 36936285 PMCID: PMC10018716 DOI: 10.1021/acsomega.2c07639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Research in chemistry with undergraduates is commonplace today, including in many liberal arts colleges. This educational opportunity for undergraduates goes back to the late 1800s, exemplified by William Albert Noyes at Rose Polytechnic, and was honed to an almost graduate-level experience by Percy Lavon Julian at DePauw University in the early 1930s. The connection between Noyes and Julian is discussed in this report. The article traces the origins of scholarly research performed by undergraduate students by Noyes at an institution that is now called the Rose-Hulman Institute of Technology. This model was then replicated and substantially expanded at DePauw University by Noyes's former colleague, William Martin Blanchard. Through sheer happenstance and a series of unfortunate incidents, Julian found himself entrusted with the task of running the undergraduate chemistry research program at DePauw in 1932. Julian's exceptional ability to mentor undergraduate students and to accomplish significant advances in synthetic organic chemical methodologies was highly successful despite the challenging circumstances of racial division, limited financial resources at DePauw during the Great Depression, and job uncertainty (as Julian was being paid by "soft money"). These experiences were undoubtedly formative in shaping Julian's career as a prominent scholar, inventor, and entrepreneur, and to his eventual legacy as one of the most inspirational chemical researchers in history. Julian's mentees at DePauw would also go on to have notable careers in the chemical sciences and allied scientific and academic disciplines.
Collapse
|
10
|
Wu X, De Bruyn M, Barta K. Primary amines from lignocellulose by direct amination of alcohol intermediates, catalyzed by RANEY® Ni. Catal Sci Technol 2022; 12:5908-5916. [PMID: 36324826 PMCID: PMC9528992 DOI: 10.1039/d2cy00864e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022]
Abstract
Primary amines are crucially important building blocks for the synthesis of a wide range of industrially relevant products. Our comprehensive catalytic strategy presented here allows diverse primary amines from lignocellulosic biomass to be sourced in a straightforward manner and with minimal purification effort. The core of the methodology is the efficient RANEY® Ni-catalyzed hydrogen-borrowing amination (with ammonia) of the alcohol intermediates, namely alkyl-phenol derivatives as well as aliphatic alcohols, obtained through the two-stage LignoFlex process. Hereby the first stage entails the copper-doped porous metal oxide (Cu20PMO) catalyzed reductive catalytic fractionation (RCF) of pine lignocellulose into a crude bio-oil, rich in dihydroconiferyl alcohol (1G), which could be converted into dihydroconiferyl amine (1G amine) in high selectivity using ammonia gas, by applying our selective amination protocol. Notably also, the crude RCF-oil directly afforded 1G amine in a high 4.6 wt% isolated yield (based on lignin content). Finally it was also shown that the here developed Ni-catalysed heterogeneous catalytic procedure was equally capable of transforming a range of aliphatic linear/cyclic primary/secondary alcohols - available from the second stage of the LignoFlex procedure - into their respective primary amines.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG The Netherlands
| | - Mario De Bruyn
- Institute for Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 4 9747 AG The Netherlands
- Institute for Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
11
|
Abstract
Herein we report the first alkynylation of quinolones with terminal alkynes under mild reaction conditions. The reaction is catalyzed by Cu(I) salts in the presence of a Lewis acid, which is essential for the reactivity of the system. The enantioselective version of this transformation has also been explored, and the methodology has been applied in the synthesis of the enantioenriched tetrahydroquinoline alkaloid cuspareine.
Collapse
Affiliation(s)
- Aitor Maestro
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen,The Netherlands
| | - Sebastien Lemaire
- Janssen
Pharmaceutica, Chemical Process Research
& Development, Turnhoutseweg
30, B-2340 Beerse, Belgium
| | - Syuzanna R. Harutyunyan
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen,The Netherlands
| |
Collapse
|
12
|
Hosseini A, Motavalizadehkakhky A, Ghobadi N, Gholamzadeh P. Aza-Diels-Alder reactions in the synthesis of tetrahydroquinoline structures. ADVANCES IN HETEROCYCLIC CHEMISTRY 2022. [DOI: 10.1016/bs.aihch.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Buchwald–Hartwig reaction: an update. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02834-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Clerigué J, Ramos MT, Menéndez JC. Mechanochemical Aza-Vinylogous Povarov Reactions for the Synthesis of Highly Functionalized 1,2,3,4-Tetrahydroquinolines and 1,2,3,4-Tetrahydro-1,5-Naphthyridines. Molecules 2021; 26:molecules26051330. [PMID: 33801330 PMCID: PMC7958332 DOI: 10.3390/molecules26051330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 11/16/2022] Open
Abstract
The aza-vinylogous Povarov reaction between aromatic amines, α-ketoaldehydes or α-formylesters and α,β-unsaturated dimethylhydrazones was carried out in a sequential three-component fashion under mechanochemical conditions. Following extensive optimization work, the reaction was performed on a vibratory ball mill operating at 20 Hz and using zirconium oxide balls and milling jar, and afforded 1,2,3,4-tetrahydroquinolines and 1,2,3,4-tetrahydro- 1,5-naphthyridines functionalized at C-2, C-4 and also at C-6, in the latter case. This protocol generally afforded the target compounds in good to excellent yields and diastereoselectivities. A comparison of representative examples with the results obtained under conventional conditions revealed that the mechanochemical protocol affords faster Povarov reactions in comparable yields using a solvent-less environment.
Collapse
|
15
|
Pang H, Hu Y, Yu J, Gallou F, Lipshutz BH. Water-Sculpting of a Heterogeneous Nanoparticle Precatalyst for Mizoroki-Heck Couplings under Aqueous Micellar Catalysis Conditions. J Am Chem Soc 2021; 143:3373-3382. [PMID: 33630579 DOI: 10.1021/jacs.0c11484] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Powdery, spherical nanoparticles (NPs) containing ppm levels of palladium ligated by t-Bu3P, derived from FeCl3, upon simple exposure to water undergo a remarkable alteration in their morphology leading to nanorods that catalyze Mizoroki-Heck (MH) couplings. Such NP alteration is general, shown to occur with three unrelated phosphine ligand-containing NPs. Each catalyst has been studied using X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), and cryogenic transmission electron microscopy (cryo-TEM) analyses. Couplings that rely specifically on NPs containing t-Bu3P-ligated Pd occur under aqueous micellar catalysis conditions between room temperature and 45 °C, and show broad substrate scope. Other key features associated with this new technology include low residual Pd in the product, recycling of the aqueous reaction medium, and an associated low E Factor. Synthesis of the precursor to galipinine, a member of the Hancock family of alkaloids, is suggestive of potential industrial applications.
Collapse
Affiliation(s)
- Haobo Pang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Julie Yu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Thorve PR, Maji B. Deaminative Olefination of Methyl N-Heteroarenes by an Amine Oxidase Inspired Catalyst. Org Lett 2021; 23:542-547. [DOI: 10.1021/acs.orglett.0c04060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pradip Ramdas Thorve
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, India
| |
Collapse
|
17
|
Jana A, Kumar A, Maji B. Manganese catalyzed C-alkylation of methyl N-heteroarenes with primary alcohols. Chem Commun (Camb) 2021; 57:3026-3029. [DOI: 10.1039/d1cc00181g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
C-Alkylations of nine different classes of methyl-substituted N-heteroarenes are disclosed using a bench stable Mn(i)-catalyst under borrowing hydrogen conditions.
Collapse
Affiliation(s)
- Akash Jana
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Amol Kumar
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| | - Biplab Maji
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur 741246
- India
| |
Collapse
|
18
|
Guo M, Dong F, Yin X, Xu L, Wang L, Li SS. Facile syntheses of tetrahydroquinolines and 1,2-dihydroquinolines via vinylogous cascade hydride transfer/cyclization. Org Chem Front 2021. [DOI: 10.1039/d0qo01622e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The medicinally significant 3-monosubstituted tetrahydroquinolines and 1,2-dihydroquinolines were controllably constructed via redox-neutral vinylogous cascade condensation/[1,5]-hydride transfer/cyclization in EtOH.
Collapse
Affiliation(s)
- Mengzhu Guo
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Fengying Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xiangcong Yin
- Hematology Diagnosis Laboratory
- The Affiliated Hospital of Qingdao University
- Qingdao
- P. R. China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
19
|
Yu L, Ding Q, Song C, Chang J. Enantioselective Total Synthesis of (–)-Angustureine. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202101025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Di Filippo M, Baumann M. Continuous Flow Synthesis of Quinolines via a Scalable Tandem Photoisomerization‐Cyclization Process. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000957] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Mara Di Filippo
- School of Chemistry University College Dublin Science Centre South D04 N2E2 Belfield Dublin Ireland
| | - Marcus Baumann
- School of Chemistry University College Dublin Science Centre South D04 N2E2 Belfield Dublin Ireland
| |
Collapse
|
21
|
Wang ZH, Shen LW, Xie KX, You Y, Zhao JQ, Yuan WC. Diastereoselective Construction of Cyclopropane-Fused Tetrahydroquinolines via a Sequential [4 + 2]/[2 + 1] Annulation Reaction. Org Lett 2020; 22:3114-3118. [PMID: 32255357 DOI: 10.1021/acs.orglett.0c00874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A sequential [4 + 2]/[2 + 1] annulation of α-aryl vinylsulfoniums with 2-aminochalcones and 2-(2-aminobenzylidene)-1H-indene-1,3(2H)-dione is reported that affords a series of cyclopropane-fused tetrahydroquinolines. The salient features of this novel and practical transformation include high efficiency, transition-metal-free nature, operational simplicity, and outstanding functional group tolerance.
Collapse
Affiliation(s)
- Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Li-Wen Shen
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Ke-Xin Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
22
|
Padín D, Varela JA, Saá C. Ruthenium-Catalyzed Tandem Carbene/Alkyne Metathesis/N-H Insertion: Synthesis of Benzofused Six-Membered Azaheterocycles. Org Lett 2020; 22:2621-2625. [PMID: 32174120 DOI: 10.1021/acs.orglett.0c00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The Cp*RuCl-based catalyst enables expedient access to a variety of benzofused six-membered azaheterocycles from unprotected o-alkynylanilines and trimethylsilyldiazomethane through an unprecedent tandem carbene/alkyne metathesis/N-H insertion reaction. The transformation takes place under mild reaction conditions (room temperature, <15 min) and with excellent functional group tolerance. The synthetic utility of the final products and a mechanistic rationale are also discussed.
Collapse
Affiliation(s)
- Damián Padín
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús A Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Asymmetric synthesis of the allocolchicinoid natural product N-acetylcolchinol methyl ether (suhailamine), solid state and solution phase conformational analysis. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Davies SG, Fletcher AM, Roberts PM, Thomson JE. The Hancock Alkaloids Angustureine, Cuspareine, Galipinine, and Galipeine: A Review of their Isolation, Synthesis, and Spectroscopic Data. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Stephen G. Davies
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Ai M. Fletcher
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - Paul M. Roberts
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| | - James E. Thomson
- Department of Chemistry; Chemistry Research Laboratory; University of Oxford; Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
25
|
Das J, Vellakkaran M, Banerjee D. Nickel-catalysed direct α-olefination of alkyl substituted N-heteroarenes with alcohols. Chem Commun (Camb) 2019; 55:7530-7533. [DOI: 10.1039/c9cc03591e] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ni-catalysed α-olefination of alkylheteroarenes with primary alcohols via dehydrogenative coupling is presented. A simple catalytic protocol gave good to excellent yields of E-selective olefins with olefin/alkane selectivity of >20 : 1.
Collapse
Affiliation(s)
- Jagadish Das
- Department of Chemistry
- Laboratory of Catalysis and Organic Synthesis
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Mari Vellakkaran
- Department of Chemistry
- Laboratory of Catalysis and Organic Synthesis
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Debasis Banerjee
- Department of Chemistry
- Laboratory of Catalysis and Organic Synthesis
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|