1
|
Arora R, Samokhin P, Lautens M. Photoexcited Transition-Metal Catalyzed Carbon-Halogen Bond Formation. Angew Chem Int Ed Engl 2025; 64:e202500929. [PMID: 39984313 DOI: 10.1002/anie.202500929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
Transition-metal catalysis has proven useful in facilitating carbon-halogen (C-X) bond formation. Despite the vast number of methodologies reported to furnish these bonds, limitations have remained, warranting continued development. The recent surge of metallaphotoredox-based transformations has provided a novel gateway to bypass these limitations. Through the use of photoexcited species, the formation of C-X bonds arise through new mechanistic pathways, finding alternatives to high reaction temperatures and stoichiometric additives. The discovery of this novel strategy has provided access to molecular space that has not been previously attainable. Herein, we report the recent advances on transition-metal photocatalyzed C-X bond formation, in hopes of easing the synthetic endeavours for chemists in industrial and academic laboratories.
Collapse
Affiliation(s)
- Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Philip Samokhin
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
2
|
Zhi S, Ma X, Zhang W. Radical Cyclization-Initiated Difunctionalization Reactions of Alkenes and Alkynes. Molecules 2024; 29:2559. [PMID: 38893437 PMCID: PMC11173560 DOI: 10.3390/molecules29112559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024] Open
Abstract
Radical reactions are powerful in the synthesis of diverse molecular scaffolds bearing functional groups. In previous review articles, we have presented 1,2-difunctionalizations, remote 1,3-, 1,4-, 1,5-, 1,6- and 1,7-difunctionalizations, and addition followed by cyclization reactions. Presented in this paper is radical cyclization followed by the second functionalization reaction. The second functionalization could be realized by atom transfer reactions, radical or transition metal-assisted coupling reactions, and reactions with neutral molecules, cationic and anionic species.
Collapse
Affiliation(s)
- Sanjun Zhi
- Jiangsu Key Laboratory for the Chemistry of Low-Dimensional Materials, Huaiyin Normal University, 111 Changjiang West Road, Huaian 223300, China;
| | - Xiaoming Ma
- School of Pharmacy, Changzhou University, 1 Gehu Road, Changzhou 213164, China;
| | - Wei Zhang
- Department of Chemistry, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125, USA
| |
Collapse
|
3
|
Zhang Z, Zhu Q, Pyle D, Zhou X, Dong G. Methyl Ketones as Alkyl Halide Surrogates: A Deacylative Halogenation Approach for Strategic Functional Group Conversions. J Am Chem Soc 2023; 145:21096-21103. [PMID: 37712624 PMCID: PMC11102776 DOI: 10.1021/jacs.3c08176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Alkyl halides are versatile precursors to access diverse functional groups (FGs). Due to their lability, the development of surrogates for alkyl halides is strategically important for complex molecule synthesis. Given the stability and ease of derivatization inherent in common alkyl ketones, here we report a deacylative halogenation approach to convert various methyl ketones to the corresponding alkyl chlorides, bromides, and iodides. The reaction is driven by forming an aromatic byproduct, i.e., 1,2,4-triazole, in which N'-methylpicolinohydrazonamide (MPHA) is employed to form a prearomatic intermediate and halogen atom-transfer (XAT) reagents are used to quench the alkyl radical intermediate. The reaction is efficient in yielding primary and secondary alkyl halides from a wide range of methyl ketones with broad FG tolerance. It also works for complex natural-product-derived and fluoro-containing substrates. In addition, one-pot conversions of methyl ketones to various other FGs and annulations with alkenes and alkynes through deacylative halogenation are realized. Moreover, an unusual iterative homologation of alkyl iodides is also demonstrated. Finally, mechanistic studies reveal an intriguing double XAT process for the deacylative iodination reaction, which could have implications beyond this work.
Collapse
Affiliation(s)
- Zining Zhang
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Qi Zhu
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Daniel Pyle
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Xukai Zhou
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Guangbin Dong
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
4
|
Dong DQ, Tian BL, Yang H, Wei ZH, Yang SH, Zhou MY, Ding CZ, Wang YL, Gao JH, Wang SJ, Yang WC, Liu BT, Wang ZL. Visible light induced palladium-catalyzed reactions involving halogenated hydrocarbon (RX). MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
5
|
Marchese AD, Durant AG, Reid CM, Jans C, Arora R, Lautens M. Pd(0)/Blue Light Promoted Carboiodination Reaction – Evidence for Reversible C–I Bond Formation via a Radical Pathway. J Am Chem Soc 2022; 144:20554-20560. [DOI: 10.1021/jacs.2c09716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Austin D. Marchese
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Andrew G. Durant
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Cian M. Reid
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Clara Jans
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Ramon Arora
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario Canada, M5S 3H6
| |
Collapse
|
6
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
7
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
8
|
Kancherla R, Muralirajan K, Rueping M. Excited-state palladium-catalysed reductive alkylation of imines: scope and mechanism. Chem Sci 2022; 13:8583-8589. [PMID: 35974758 PMCID: PMC9337745 DOI: 10.1039/d2sc02363f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022] Open
Abstract
Palladium catalysis induced by visible-light irradiation is a promising tool for promoting unusual chemical reactivity. Here, the hybrid alkyl radical/Pd(i) species generated is used to promote the reductive alkylation of imines.
Collapse
Affiliation(s)
- Rajesh Kancherla
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Krishnamoorthy Muralirajan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
9
|
Grygorenko OO, Moskvina VS, Kleban I, Hryshchyk OV. Synthesis of saturated and partially saturated heterocyclic boronic derivatives. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Muralirajan K, Kancherla R, Gimnkhan A, Rueping M. Unactivated Alkyl Chloride Reactivity in Excited-State Palladium Catalysis. Org Lett 2021; 23:6905-6910. [PMID: 34432470 DOI: 10.1021/acs.orglett.1c02467] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Excited-state palladium catalysis is an efficient process for the alkylation of diverse organic compounds via the generation of alkyl radicals from alkyl bromides and iodides. However, the generation of alkyl radicals from more stable alkyl chlorides remains challenging. Herein, we demonstrate the excited-state palladium-catalyzed synthesis of oxindoles and isoquinolinediones via alkylation/annulation reaction by overcoming inherent limitations associated with unactivated C(sp3)-Cl bond activation at room temperature.
Collapse
Affiliation(s)
- Krishnamoorthy Muralirajan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rajesh Kancherla
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Aidana Gimnkhan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
11
|
Du J, Wang X, Wang H, Wei J, Huang X, Song J, Zhang J. Photoinduced Palladium-Catalyzed Intermolecular Radical Cascade Cyclization of N-Arylacrylamides with Unactivated Alkyl Bromides. Org Lett 2021; 23:5631-5635. [PMID: 34236201 DOI: 10.1021/acs.orglett.1c01698] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mild visible-light-induced Pd-catalyzed intermolecular radical cascade reaction of N-arylacrylamides with unactivated alkyl bromides is disclosed. Photoexcited Pd complexes transfer a single electron in this protocol, and hybrid alkyl Pd-radical species are involved as the key reaction intermediates. Sophisticated bioactive oxindole derivatives bearing various substituents and substitution patterns can be efficiently afforded through this approach.
Collapse
Affiliation(s)
- Juan Du
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xing Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Hongling Wang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinhu Wei
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Xuan Huang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Junmin Zhang
- International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
12
|
Bellotti P, Koy M, Gutheil C, Heuvel S, Glorius F. Three-component three-bond forming cascade via palladium photoredox catalysis. Chem Sci 2020; 12:1810-1817. [PMID: 34163944 PMCID: PMC8179282 DOI: 10.1039/d0sc05551d] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 12/18/2022] Open
Abstract
A highly modular radical cascade strategy based upon radical cyclisation/allylic substitution sequence between alkyl/aryl bromides, 1,3-dienes and nucleophiles ranging from sulfinates to amines, phenols and 1,3-dicarbonyls is described (>80 examples). Palladium phosphine complexes - which merge properties of photo- and cross coupling-catalysts - allow to forge three bonds with complete 1,4-selectivity and stereocontrol, delivering highly value added carbocyclic and heterocyclic motifs that can feature - inter alia - vicinal quaternary centers, free protic groups, gem-difluoro motifs and strained rings. Furthermore, a flow chemistry approach was for the first time applied in palladium-photocatalysed endeavors involving radicals.
Collapse
Affiliation(s)
- Peter Bellotti
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Maximilian Koy
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Christian Gutheil
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Steffen Heuvel
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|