1
|
Grover J, Sebastian AT, Maiti S, Bissember AC, Maiti D. Unified approaches in transition metal catalyzed C(sp 3)-H functionalization: recent advances and mechanistic aspects. Chem Soc Rev 2025; 54:2006-2053. [PMID: 39838813 DOI: 10.1039/d0cs00488j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
In organic synthesis, C(sp3)-H functionalization is a revolutionary method that allows direct alteration of unactivated C-H bonds. It can obviate the need for pre-functionalization and provides access to streamlined and atom economical routes for the synthesis of complex molecules starting from simple starting materials. Many strategies have evolved, such as photoredox catalysis, organocatalysis, non-directed C-H activation, transiently directed C-H activation, and native functionality directed C-H activation. Together these advances have reinforced the importance of C(sp3)-H functionalization in synthetic chemistry. C(sp3)-H functionalization has direct applications in pharmacology, agrochemicals, and materials science, demonstrating its ability to transform synthetic approaches by creating new retrosynthetic disconnections and boost the efficiency of chemical processes. This review aims to provide an overview of current state of C(sp3)-H functionalization, focusing more on recent breakthroughs and associated mechanistic insights.
Collapse
Affiliation(s)
- Jagrit Grover
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| | | | - Siddhartha Maiti
- VIT Bhopal University School of Biosciences Engineering & Technology, India
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia.
| | - Debabrata Maiti
- Department of Chemistry, IIT Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
2
|
Nonn M, Fustero S, Kiss L. Application of 2-Azabicyclo[2.2.1]Hept-5-En-3-One (Vince Lactam) in Synthetic Organic and Medicinal Chemistry. CHEM REC 2024; 24:e202400070. [PMID: 39008895 DOI: 10.1002/tcr.202400070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Indexed: 07/17/2024]
Abstract
2-Azabicyclo[2.2.1]hept-5-en-3-one (Vince lactam) is known to be a valuable building block in synthetic organic chemistry and drug research. It is an important precursor to access of some blockbuster antiviral drugs such as Carbovir or Abacavir as well as other carbocyclic neuraminidase inhibitors as antiviral agents. The ring C=C bond of the Vince lactam allows versatile chemical manipulations to create not only functionalized γ-lactams, but also γ-amino acid derivatives with a cyclopentane framework. The aim of the current account is to summarize the chemistry of Vince lactam, its synthetic utility and application in organic and medicinal chemistry over the last decade.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Santos Fustero
- Department of Organic Chemistry, University of Valencia, Pharmacy Faculty, València, 46100-Burjassot Valencia, Spain
| | - Loránd Kiss
- Institute of Organic Chemistry, Stereochemistry Research Group, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| |
Collapse
|
3
|
Yi LN, Zhao T, Bu J, Long J, Yang Q. Directed C(sp 3)-H Arylation of Free α-Aminophosphonates: Dual Models Exploration via Palladium Catalysis. Org Lett 2024; 26:4132-4136. [PMID: 38717283 DOI: 10.1021/acs.orglett.4c01322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In this report, we present the dual activation models for transient directing group-directed and amino-self-directed Pd-catalyzed α-aminophosphonate side-chain C(sp3)-H arylation. Both strategies showed facile, efficient, and single regioselectivity in the reaction between free α-aminophosphonates and aryl iodides. Furthermore, the modification of amino and late-stage functionalization of the C(sp3)-P bond from products indicates potential applications for α-aminophosphonates.
Collapse
Affiliation(s)
- Li Na Yi
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Tao Zhao
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jinghan Bu
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Jiedi Long
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qiang Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
4
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
5
|
Yang K, Li Z, Liu C, Li Y, Hu Q, Elsaid M, Li B, Das J, Dang Y, Maiti D, Ge H. Ligand-promoted palladium-catalyzed β-methylene C-H arylation of primary aldehydes. Chem Sci 2022; 13:5938-5943. [PMID: 35685787 PMCID: PMC9132077 DOI: 10.1039/d2sc01677j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022] Open
Abstract
The transient directing group (TDG) strategy allowed long awaited access to the direct β-C(sp3)-H functionalization of unmasked aliphatic aldehydes via palladium catalysis. However, the current techniques are restricted to terminal methyl functionalization, limiting their structural scopes and applicability. Herein, we report the development of a direct Pd-catalyzed methylene β-C-H arylation of linear unmasked aldehydes by using 3-amino-3-methylbutanoic acid as a TDG and 2-pyridone as an external ligand. Density functional theory calculations provided insights into the reaction mechanism and shed light on the roles of the external and transient directing ligands in the catalytic transformation.
Collapse
Affiliation(s)
- Ke Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Zhi Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Chong Liu
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Yunjian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Qingyue Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University Jiangsu 213164 China
| | - Mazen Elsaid
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Bijin Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| | - Jayabrata Das
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University Tianjin 300072
| | - Debabrata Maiti
- Department of Chemistry and Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay Mumbai 400076
| | - Haibo Ge
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock TX 79409-1061
| |
Collapse
|
6
|
Ni SF, Huang G, Chen Y, Wright JS, Li M, Dang L. Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Shi Y, Bai W, Mu W, Li J, Yu J, Lian B. Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Jacob C, Maes BUW, Evano G. Transient Directing Groups in Metal-Organic Cooperative Catalysis. Chemistry 2021; 27:13899-13952. [PMID: 34286873 DOI: 10.1002/chem.202101598] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Indexed: 12/13/2022]
Abstract
The direct functionalization of C-H bonds is among the most fundamental chemical transformations in organic synthesis. However, when the innate reactivity of the substrate cannot be utilized for the functionalization of a given single C-H bond, this selective C-H bond functionalization mostly relies on the use of directing groups that allow bringing the catalyst in close proximity to the C-H bond to be activated and these directing groups need to be installed before and cleaved after the transformation, which involves two additional undesired synthetic operations. These additional steps dramatically reduce the overall impact and the attractiveness of C-H bond functionalization techniques since classical approaches based on substrate pre-functionalization are sometimes still more straightforward and appealing. During the past decade, a different approach involving both the in situ installation and removal of the directing group, which can then often be used in a catalytic manner, has emerged: the transient directing group strategy. In addition to its innovative character, this strategy has brought C-H bond functionalization to an unprecedented level of usefulness and has enabled the development of remarkably efficient processes for the direct and selective introduction of functional groups onto both aromatic and aliphatic substrates. The processes unlocked by the development of these transient directing groups will be comprehensively overviewed in this review article.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et Physico-Chimie Organiques, Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt 50, CP160/06, 1050, Brussels, Belgium
| |
Collapse
|
9
|
Ha H, Choi HJ, Park H, Gwon Y, Lee J, Kwak J, Kim M, Jung B. Pd‐Catalyzed Regio‐ and Stereoselective
sp
3
C−H Arylation of Primary Aliphatic Amines: Mechanistic Studies and Synthetic Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hyeonbin Ha
- Department of Chemistry Chungbuk National University Cheongju 28644 Republic of Korea
| | - Ho Jeong Choi
- Department of Chemistry Chungbuk National University Cheongju 28644 Republic of Korea
| | - Hahyoun Park
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Yunyeong Gwon
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jiin Lee
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research Center Korea Research Institute of Chemical Technology (KRICT) Daejeon 34114 Republic of Korea
| | - Min Kim
- Department of Chemistry Chungbuk National University Cheongju 28644 Republic of Korea
| | - Byunghyuck Jung
- Department of Emerging Materials Science Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| |
Collapse
|
10
|
Higham JI, Bull JA. Transient imine directing groups for the C-H functionalisation of aldehydes, ketones and amines: an update 2018-2020. Org Biomol Chem 2020; 18:7291-7315. [PMID: 32926032 DOI: 10.1039/d0ob01587c] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The use of pre-installed directing groups has become a popular and powerful strategy to control site selectivity in transition metal catalysed C-H functionalisation reactions. However, the necessity for directing group installation and removal reduces the efficiency of a directed C-H functionalisation method. To overcome this limitation, taking inspiration from organocatalytic methodologies, the use of transient directing groups has arisen. These methods allow for a transient ligand to be used, potentially in catalytic quantities, without the need for discrete installation or removal steps, enabling the discovery of more efficient, and mechanistically intriguing, dual catalytic methods. This review summarises recent developments in this fast moving field covering >70 new methodologies, highlighting new directing group designs and advances in mechanistic understanding. It covers progress since 2018, providing an update to our previous review of the field.
Collapse
Affiliation(s)
- Joe I Higham
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - James A Bull
- Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|