1
|
Li JS, Liu J, Wang YT, Dai JY, Li ZW, Luo WW, Zhang YF, Liu HW, Liu WD. Diazotization-Enabled Deaminative Late-Stage Functionalization of Primary Sulfonamides. Org Lett 2023; 25:8263-8268. [PMID: 37947421 DOI: 10.1021/acs.orglett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We, for the first time, disclosed a simple and efficient strategy for the late-stage functionalization of primary sulfonamides by diazotization, leading to sulfonyl chlorides, sulfonates, and complex sulfonamides. This protocol obviates the requirement for the prefunctionalization of sulfonamides. Its applicability is exemplified by the late-stage functionalization of sulfonamide-type drugs.
Collapse
Affiliation(s)
- Jiang-Sheng Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yao-Tian Wang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia-Ying Dai
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Wei Luo
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
2
|
Nozawa-Kumada K, Hayashi M, Kwon E, Shigeno M, Yada A, Kondo Y. Copper-Catalyzed Intramolecular Olefinic C(sp 2)-H Amidation for the Synthesis of γ-Alkylidene- γ-lactams. Molecules 2023; 28:6682. [PMID: 37764458 PMCID: PMC10537769 DOI: 10.3390/molecules28186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,β-unsaturated- or α,β-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Masahito Hayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
| | - Akira Yada
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| |
Collapse
|
3
|
Eliwa EM, Elgammal WE, Belal A, Abourehab MAS, Abd El-Gilil SM, Mehany ABM, Elhagali GAM. Cu(II)-Promoted the Chemical Synthesis of New Azines-Based Naphthalene Scaffold as In Vitro Potent Mushroom Tyrosinase Inhibitors and Evaluation of Their Antiproliferative Activity. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Essam M. Eliwa
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Walid E. Elgammal
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Mohammed A. S. Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia, Egypt
| | - Shimaa M. Abd El-Gilil
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Egypt
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| | - Gameel A. M. Elhagali
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, Egypt
| |
Collapse
|
4
|
Ban T, Vu HM, Zhang J, Yong JY, Liu Q, Li XQ. Rhodium-Catalyzed Azine-Directed C-H Amidation with N-Methoxyamides. J Org Chem 2022; 87:5543-5555. [PMID: 35417153 DOI: 10.1021/acs.joc.1c02868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using N-methoxyamide reagents as an amide source, C-H amidation was realized at the ortho position of azine under the action of rhodium and boric acid. The method has mild reaction conditions, high atomic utilization, excellent yield, and wide adaptability to amidation reagents (both aromatic amides and fatty amides are applicable). Amide-substituted ketones can be obtained by a simple treatment and can be further transformed into bioactive substances. This provides a good supplement for the C-H bond amidation of aromatic rings.
Collapse
Affiliation(s)
- Tao Ban
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Huu-Manh Vu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jia-Yuan Yong
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Qiong Liu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xu-Qin Li
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
5
|
Ma J, Zhou X, Chen JL, Shi J, Cheng HC, Guo P, Ji H. Directing Group Strategies in Rhodium-Catalyzed C-H Amination. Org Biomol Chem 2022; 20:7554-7576. [DOI: 10.1039/d2ob01157c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Construction of a carbon-nitrogen bond is one of the most prevalent operations in nature and organic synthesis. The resulting amino compounds are privileged structural fragments in natural products, pharmaceutical drugs,...
Collapse
|
6
|
Beletskaya IP, Averin AD. Metal-catalyzed reactions for the C(sp2)–N bond formation: achievements of recent years. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review deals with the main catalytic methods for the C(sp2)–N bond formation, including Buchwald–Hartwig palladium-catalyzed amination of aryl and heteroaryl halides, renaissance of the Ullmann chemistry, i.e., the application of catalysis by copper complexes to form the carbon–nitrogen bond, and Chan–Lam reactions of (hetero)arylboronic acids with amines. Also, oxidative amination with C–H activation, which has been booming during the last decade, is addressed. Particular attention is paid to achievements in the application of heterogenized catalysts.
The bibliography includes 350 references.
Collapse
|
7
|
Huang Y, Pi C, Tang Z, Wu Y, Cui X. Cp*Co(III)-catalyzed C H amidation of azines with dioxazolones. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Sk MR, Bera SS, Basuli S, Metya A, Maji MS. Recent Progress in the C−N Bond Formation via High‐Valent Group 9 Cp*M(III)‐Catalyzed Directed sp
2
C−H Activation. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000367] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Md Raja Sk
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Sourav Sekhar Bera
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Suchand Basuli
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Abhisek Metya
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| | - Modhu Sudan Maji
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721302 West Bengal India
| |
Collapse
|