1
|
Zhang CB, Xu J, Wang XQ, Deng YH, Dou PH, Xu WL, Han QX, Zhao L, Fu JY. Synthesis of highly substituted 2-hydroxybenzophenones through skeletal clipping of 3-benzofuranones. Chem Commun (Camb) 2025; 61:5645-5648. [PMID: 40111376 DOI: 10.1039/d5cc00396b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The transition-metal-free synthesis of 2-hydroxybenzophenones was achieved through skeletal clipping of 3-benzofuranones via annulation, ring clipping and a benzannulation process under mild conditions. More importantly, these compounds were evaluated for their antifungal activities in pesticide chemistry. Additionally, theoretical calculations were conducted on the key transition states.
Collapse
Affiliation(s)
- Chuan-Bao Zhang
- School of Pharmacy, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450052, China
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Jiying Xu
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xiao-Qing Wang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Yi-Hang Deng
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Pei-Hao Dou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Wen-Li Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Qiu-Xia Han
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Lili Zhao
- State Key Laboratory of Material-Oriented Chemical Engineering, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Ji-Ya Fu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Dhotare BB, Kanojia SV, Sakhiya CK, Wadawale A, Goswami D. Transition-metal-free decarbonylation-oxidation of 3-arylbenzofuran-2(3 H)-ones: access to 2-hydroxybenzophenones. Beilstein J Org Chem 2024; 20:2655-2667. [PMID: 39469297 PMCID: PMC11514451 DOI: 10.3762/bjoc.20.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
A transition-metal-free decarbonylation-oxidation protocol for the conversion of 3-arylbenzofuran-2(3H)-ones to 2-hydroxybenzophenones under mild conditions has been developed. NMR studies confirmed the role of in-situ-generated hydroperoxide in the conversion. The protocol was applied to a diverse range of substrates to access the target products in good to excellent yields. A structure-activity study for the 5-substituted-2-hydroxybenzophenones towards UV-protection abilities has been verified by mathematical calculations.
Collapse
Affiliation(s)
- Bhaskar B Dhotare
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, PIN-400085, India
| | - Seema V Kanojia
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, PIN-400085, India
| | - Chahna K Sakhiya
- NMIMS Sunandan Divatia School of Science, Vile-Parle, Mumbai-400056, India
| | - Amey Wadawale
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - Dibakar Goswami
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, PIN-400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, PIN-400094, India
| |
Collapse
|
3
|
Gim J, Rubio PYM, Mohandoss S, Lee YR. Lewis Acid-Catalyzed Benzannulation of Vinyloxiranes with 3-Formylchromones or 1,4-Quinones for Diversely Functionalized 2-Hydroxybenzophenones, 1,4-Naphthoquinones, and Anthraquinones. J Org Chem 2024; 89:2538-2549. [PMID: 38302117 DOI: 10.1021/acs.joc.3c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A facile and convenient protocol for the regioselective construction of functionalized 2-hydroxybenzophenones is described. This protocol involves the Sc(OTf)3/BF3·OEt2-catalyzed benzannulation of 2-vinyloxirans with 3-formylchromone, which involves cascade in situ diene formation, [4 + 2] cycloaddition, elimination, and ring-opening strategies. Moreover, it provides an expedited synthetic pathway to access biologically intriguing 1,4-naphthoquinones and anthraquinones including vitamin K3 and tectoquinone. The synthesized compounds also hold potential for use as UV filters and show promise as chemosensors for Cu2+ and Mg2+ ions.
Collapse
Affiliation(s)
- Jihwan Gim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Peter Yuosef M Rubio
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| |
Collapse
|
4
|
Liu RH, Chai GL, Wang X, Deng HY, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of β-Trifluoromethyl α,β-Unsaturated Ketones with N,N'-Cyclic Azomethine Imines. J Org Chem 2023; 88:16566-16580. [PMID: 37967281 DOI: 10.1021/acs.joc.3c02106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The (R)-3,3'-(3,5-(CF3)2-C6H3)2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of β-trifluoromethyl α,β-unsaturated ketone with N,N'-cyclic azomethine imines was developed to afford N,N'-bicyclic pyrazolidine derivatives bearing a stereogenic carbon center containing CF3 motifs in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This catalytic system features mild reaction conditions, high efficiency, and a broad substrate scope.
Collapse
Affiliation(s)
- Rui-Hao Liu
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Yu Deng
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Chai GL, Wang X, Hou YJ, Ren WH, Chang J. Chiral-Boron-Complex Catalyzed Asymmetric Inverse-Electron-Demand Aza-Diels-Alder Reaction of β-Trifluoromethyl α,β-Unsaturated Ketones with Cyclic N-Sulfonyl Ketimines. Org Lett 2023; 25:6982-6986. [PMID: 37721381 DOI: 10.1021/acs.orglett.3c02463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
A highly efficient asymmetric inverse-electron-demand aza-Diels-Alder reaction of β-trifluoromethyl α,β-unsaturated ketone with cyclic N-sulfonyl ketimines catalyzed by (R)-3,3'-I2-BINOL-boron-complex was developed. A broad range of fused piperidine derivatives bearing stereogenic carbon containing CF3 motifs were prepared in high yields with excellent diastereo- and enantioselectivities (up to >20:1 dr, and >99% ee). This protocol had the characteristics of mild reaction conditions, high efficiency, and high stereoselectivity.
Collapse
Affiliation(s)
- Guo-Li Chai
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiao Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Jing Hou
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wen-Hui Ren
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Chai GL, Yao EZ, Liu RH, Chang J. Chiral-Boron-Complex-Catalyzed Asymmetric [3 + 2] Cycloaddition of 2'-Hydroxychalcones with N, N'-Cyclic Azomethine Imines. Org Lett 2022; 24:6449-6454. [PMID: 36040361 DOI: 10.1021/acs.orglett.2c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the (R)-3,3'-I2-BINOL-boron-complex-catalyzed asymmetric 1,3-dipolar cycloaddition of 2'-hydroxychalcones with N,N'-cyclic azomethine imines, providing the corresponding N,N'-bicyclic pyrazolidine derivatives with three contiguous tertiary stereocenters in high yields with excellent diastereo- and enantioselectivities (up to >99:1 diastereomeric ratio and >99% enantiomeric excess). This catalytic system exhibits advantages of mild reaction conditions, high efficiency, and broad substrate scopes.
Collapse
Affiliation(s)
- Guo-Li Chai
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - En-Ze Yao
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Rui-Hao Liu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Junbiao Chang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| |
Collapse
|
7
|
Yan M, Zhu L, Zhang X, Yin SF, Kambe N, Qiu R. Nickel-Catalyzed N, N-Diarylation of 8-Aminoquinoline with Large Steric Aryl Bromides and Fluorescence of Products. Org Lett 2021; 23:2514-2520. [PMID: 33724855 DOI: 10.1021/acs.orglett.1c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A simple and efficient methodology for the synthesis of large sterically hindered triarylamines in a single step was developed. A direct N,N-diarylation of 8-aminoquinoline with sterically hindered bromides, making use of inexpensive nickel as a catalyst and simple sodium salt as a base, gives the products in good to excellent yields. Various bromides and substituted 8-aminoquinolines are tolerated. Preliminary fluorescence results indicate that these sterically hindered and conjugated triarylamines may have some potential in material chemistry.
Collapse
Affiliation(s)
- Mingpan Yan
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Longzhi Zhu
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China.,Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, P. R. China
| | - Xingxing Zhang
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Shenzhen Research Institute, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Zhou J, Li T, Li M, Li C, Hu X, Jin L, Sun N, Hu B, Shen Z. FeCl
2
‐Catalyzed Direct C
2
‐Benzylation of Benzofurans with Diarylmethanes via Cross Dehydrogenative Coupling. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jiacheng Zhou
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Tianci Li
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Meichao Li
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Chunmei Li
- College of Chemical Engineering Zhejiang University of Technology P. R. China
- School of Chemistry and Chemical Engineering Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process Shaoxing University P. R. China
| | - Xinquan Hu
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Liqun Jin
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Nan Sun
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Baoxiang Hu
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| | - Zhenlu Shen
- College of Chemical Engineering Zhejiang University of Technology P. R. China
| |
Collapse
|
9
|
Lin J, Zheng TY, Fan NQ, Zhang P, Jiang K, Wei Y. Pyrrole synthesis through Cu-catalyzed cascade [3 + 2] spiroannulation/aromatization of oximes with azadienes. Org Chem Front 2021. [DOI: 10.1039/d1qo00443c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We disclose an efficient synthetic protocol for the assembly of poly-substituted pyrroles through cascade [3 + 2] spiroannulation/aromatization of oximes with azadienes.
Collapse
Affiliation(s)
- Jing Lin
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Ting-Yu Zheng
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Neng-Quan Fan
- Chongqing Institute for Food and Drug Control
- Chongqing
- China
| | - Pu Zhang
- Chongqing Institute for Food and Drug Control
- Chongqing
- China
| | - Kun Jiang
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| | - Ye Wei
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
- China
| |
Collapse
|
10
|
Feberero C, Sedano C, Suárez-Pantiga S, López CS, Sanz R. Experimental and Computational Study of the 1,5-O → N Carbamoyl Snieckus-Fries-Type Rearrangement. J Org Chem 2020; 85:12561-12578. [PMID: 32897069 DOI: 10.1021/acs.joc.0c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The reactions of o-lithiated O-aryl N,N-diethylcarbamates with different C-N multiple bond electrophiles have been thoroughly studied. A 1,5-O → N carbamoyl shift, a new variation of the anionic Fries-type rearrangement, takes place when nitriles, imines, or alkylcarbodiimides are employed. In these cases, the carbamoyl group plays a dual role as a directing group, building up a variety of functional groups through the 1,5-O → N carbamoyl migration. On the other hand, the use of iso(thio)cyanates and arylcarbodiimides led to non-rearranged o-functionalized O-arylcarbamates. This reactivity was further computationally explored, and the governing factor could be traced back to the relative basicity of the alternative products (migrated vs nonmigrated substrates). This exploration also provided interesting insights about the degree of complexation of the lithium cations onto these substrates. A new access to useful 2-hydroxybenzophenone derivatives has also been developed.
Collapse
Affiliation(s)
- Claudia Feberero
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Carlos Sedano
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Samuel Suárez-Pantiga
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Carlos Silva López
- Departamento de Quı́mica Orgánica and CITACA (Agri-Food Research and Transfer Cluster), Universidade de Vigo, 36310 Vigo, Spain
| | - Roberto Sanz
- Área de Quı́mica Orgánica, Departamento de Quı́mica, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001 Burgos, Spain
| |
Collapse
|