1
|
Zhang J, Wu J. Recent progress in asymmetric radical reactions enabled by chiral iron catalysts. Chem Commun (Camb) 2024; 60:12633-12649. [PMID: 39380541 DOI: 10.1039/d4cc03047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Transition-metal-catalyzed radical asymmetric reactions offer a versatile and effective platform for accessing chiral organic molecules with high enantiopurity. Given that iron is the most abundant and less toxic transition metalic element available, the application of iron catalysts is considered to be a more sustainable and attractive approach. Over the last decade, several exciting and notable achievements have been witnessed. In this highlight, we aim to provide an overview of the progress in ligand-enabled iron-catalyzed asymmetric radical reactions, with an emphasis on the reaction mechanisms.
Collapse
Affiliation(s)
- Jun Zhang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Yang Y, Ebel B, Oppel IM, Patureau FW. Oxidation of NOBINs Toward α-Spiropyrrolidones. Org Lett 2024; 26:7541-7545. [PMID: 39225416 DOI: 10.1021/acs.orglett.4c02499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
While the oxidation of phenols and BINOLs is well documented to lead to a broad range of useful organic scaffolds, that of NOBINs is far less explored. We investigate herein their oxidation with a number of standard chemical oxidants, leading upon skeletal rearrangement to the corresponding α-spiropyrrolidones, which represent a rare and highly valuable heterocyclic core.
Collapse
Affiliation(s)
- Yun Yang
- Institutes of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ben Ebel
- Institutes of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Iris M Oppel
- Institutes of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Frederic W Patureau
- Institutes of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
3
|
Kadsanit N, Worsawat P, Sakonsinsiri C, McElroy CR, Macquarrie D, Noppawan P, Hunt AJ. Sustainable methods for the carboxymethylation and methylation of ursolic acid with dimethyl carbonate under mild and acidic conditions. RSC Adv 2024; 14:16921-16934. [PMID: 38799212 PMCID: PMC11124730 DOI: 10.1039/d4ra02122c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Ursolic acid is a triterpene plant extract that exhibits significant potential as an anti-cancer, anti-tumour, and anti-inflammatory agent. Its direct use in the pharmaceutical industry is hampered by poor uptake of ursolic acid in the human body coupled with rapid metabolism causing a decrease in bioactivity. Modification of ursolic acid can overcome such issues, however, use of toxic reagents, unsustainable synthetic routes and poor reaction metrics have limited its potential. Herein, we demonstrate the first reported carboxymethylation and/or methylation of ursolic acid with dimethyl carbonate (DMC) as a green solvent and sustainable reagent under acidic conditions. The reaction of DMC with ursolic acid, in the presence of PTSA, ZnCl2, or H2SO4-SiO2 yielded the carboxymethylation product 3β-[[methoxy]carbonyl]oxyurs-12-en-28-oic acid, the methylation product 3β-methoxyurs-12-en-28-oic acid and the dehydration product urs-2,12-dien-28-oic acid. PTSA demonstrated high conversion and selectivity towards the previously unreported carboxymethylation of ursolic acid, while the application of formic acid in the system led to formylation of ursolic acid (3β-formylurs-12-en-28-oic acid) in quantitative yields via esterification, with DMC acting solely as a solvent. Meanwhile, the methylation product of ursolic acid, 3β-methoxyurs-12-en-28-oic acid, was successfully synthesised with FeCl3, demonstrating exceptional conversion and selectivity, >99% and 99%, respectively. Confirmed with the use of qualitative and quantitative green metrics, this result represents a significant improvement in conversion, selectivity, safety, and sustainability over previously reported methods of ursolic acid modification. It was demonstrated that these methods could be applied to other triterpenoids, including corosolic acid. The study also explored the potential pharmaceutical applications of ursolic acid, corosolic acid, and their derivatives, particularly in anti-inflammatory, anti-cancer, and anti-tumour treatments, using molecular ADMET and docking methods. The methods developed in this work have led to the synthesis of novel molecules, thus creating opportunities for the future investigation of biological activity and the modification of a wide range of triterpenoids applying acidic DMC systems to deliver novel active pharmaceutical intermediates.
Collapse
Affiliation(s)
- Nuttapong Kadsanit
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Pattamabhorn Worsawat
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University Khon Kaen 40002 Thailand
| | - Con R McElroy
- School of Chemistry, University of Lincoln Brayford Pool Campus Lincoln LN6 7TS UK
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Duncan Macquarrie
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York Heslington York YO10 5DD UK
| | - Pakin Noppawan
- Department of Chemistry, Faculty of Science, Mahasarakham University Maha Sarakham 44150 Thailand
| | - Andrew J Hunt
- Materials Chemistry Research Center (MCRC), Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University Khon Kaen 40002 Thailand
| |
Collapse
|
4
|
Brufani G, Di Erasmo B, Li CJ, Vaccaro L. Csp 2-H functionalization of phenols: an effective access route to valuable materials via Csp 2-C bond formation. Chem Sci 2024; 15:3831-3871. [PMID: 38487228 PMCID: PMC10935747 DOI: 10.1039/d4sc00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 03/17/2024] Open
Abstract
In the vast majority of top-selling pharmaceutical and industrial products, phenolic structural motifs are highly prevalent. Non-functionalized simple phenols serve as building blocks in the synthesis of value-added chemicals. It is worth mentioning that lignin, being the largest renewable biomass source of aromatic building blocks in nature, mainly consists of phenolic units, which enable the production of structurally diverse phenols. Given their remarkable applicability in the chemical value chain, many efforts have been devoted to increasing the molecular complexity of the phenolic scaffold. Among the key techniques, direct functionalization of Csp2-H is a powerful tool, enabling the construction of new Csp2-C bonds in an economical and atomic manner. Herein we present and summarize the large plethora of direct Csp2-H functionalization methods that enables scaffold diversification of simple, unprotected phenols, leading to the formation of new Csp2-C bonds. In this review article, we intend to summarize the contributions that appeared in the literature mainly in the last 5 years dealing with the functionalization of unprotected phenols, both catalytic and non-catalytic. Our goal is to highlight the key findings and the ongoing challenges in the stimulating and growing research dedicated to the development of new protocols for the valorization of phenols.
Collapse
Affiliation(s)
- Giulia Brufani
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
| | - Benedetta Di Erasmo
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Chao-Jun Li
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal QC H3A0B8 Canada
| | - Luigi Vaccaro
- Laboratory of Green S.O.C., Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia Via Elce di Sotto 8 06123 Perugia Italy https://greensoc.chm.unipg.it
| |
Collapse
|
5
|
Aghi A, Sau S, Kumar A. Fe(III)-catalyzed stereoselective synthesis of deoxyglycosides using stable bifunctional deoxy-phenylpropiolate glycoside donors. Carbohydr Res 2024; 536:109051. [PMID: 38325069 DOI: 10.1016/j.carres.2024.109051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
Herein, we report a mild and economical route for the stereoselective synthesis of 2-deoxy and 2,6-dideoxyglycosides via FeCl3-catalyzed activation of bench stable deoxy-phenylpropiolate glycosyl donors (D-PPGs). Optimized reaction conditions work well under additive-free conditions to afford the corresponding 2-deoxy and 2,6-dideoxyglycosides in good yields with high α-anomeric selectivity by reacting with sugar and non-sugar-based acceptors. The optimized conditions were also extended for disarmed D-PPG donors. In addition, the developed strategy is amenable to high-scale-up synthesis.
Collapse
Affiliation(s)
- Anjali Aghi
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Sankar Sau
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Bihar, 801106, India.
| |
Collapse
|
6
|
Surgenor RR, Liu X, Keenlyside MJH, Myers W, Smith MD. Enantioselective synthesis of atropisomeric indoles via iron-catalysed oxidative cross-coupling. Nat Chem 2023; 15:357-365. [PMID: 36509852 DOI: 10.1038/s41557-022-01095-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/18/2022] [Indexed: 12/14/2022]
Abstract
Heterobiaryl compounds that exhibit axial chirality are of increasing value and interest across several fields, but direct oxidative methods for their enantioselective synthesis remain elusive. Here we disclose that an iron catalyst in the presence of a chiral PyBOX ligand and an oxidant enables direct coupling between naphthols and indoles to yield atropisomeric heterobiaryl compounds with high levels of enantioselectivity. The reaction exhibits remarkable chemoselectivity and exclusively yields cross-coupled products without competing homocoupling. Mechanistic investigations enable us to postulate that an indole radical is generated in the reaction but that this is probably an off-cycle event, and that the reaction proceeds through formation of a chiral Fe-bound naphthoxy radical that is trapped by a nucleophilic indole. We envision that this simple, cheap and sustainable catalytic manifold will facilitate access to a range of heterobiaryl compounds and enable their application across the fields of materials science, medicinal chemistry and catalysis.
Collapse
Affiliation(s)
| | - Xiangqian Liu
- Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | | | - William Myers
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Martin D Smith
- Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Abstract
Phenols and their derivatives are the elementary building blocks for several classes of complex molecules that play essential roles in biological systems. Nature has devised methods to selectively couple phenolic compounds, and many efforts have been undertaken by chemists to mimic such coupling processes. A range of mechanisms can be involved and with well-studied catalysts, reaction outcomes in phenol-phenol oxidative coupling reactions can be predicted with a good level of fidelity. However, reactions with catalysts that have not been studied or that do not behave similarly to known catalysts can be hard to predict and control. This Perspective provides an overview of catalytic methods for the oxidative coupling of phenols, focusing on the last 10 years, and summarizes current challenges.
Collapse
Affiliation(s)
- Jingze Wu
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marisa C Kozlowski
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Purtsas A, Rosenkranz M, Dmitrieva E, Kataeva O, Knölker H. Iron-Catalyzed Oxidative C-O and C-N Coupling Reactions Using Air as Sole Oxidant. Chemistry 2022; 28:e202104292. [PMID: 35179270 PMCID: PMC9314016 DOI: 10.1002/chem.202104292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 01/31/2023]
Abstract
We describe the oxygenation of tertiary arylamines, and the amination of tertiary arylamines and phenols. The key step of these coupling reactions is an iron-catalyzed oxidative C-O or C-N bond formation which generally provides the corresponding products in high yields and with excellent regioselectivity. The transformations are accomplished using hexadecafluorophthalocyanine-iron(II) (FePcF16 ) as catalyst in the presence of an acid or a base additive and require only ambient air as sole oxidant.
Collapse
Affiliation(s)
- Alexander Purtsas
- Fakultät ChemieTechnische Universität DresdenBergstraße 6601069DresdenGermany
| | - Marco Rosenkranz
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Evgenia Dmitrieva
- Center of SpectroelectrochemistryLeibniz Institute for Solid State and Materials Research (IFW) DresdenHelmholtzstraße 2001069DresdenGermany
| | - Olga Kataeva
- A. E. Arbuzov Institute of Organic and Physical ChemistryFRC Kazan Scientific Center, Russian Academy of SciencesArbuzov Str. 8Kazan420088Russia
| | | |
Collapse
|
9
|
Dyadyuk A, Vershinin V, Shalit H, Shalev H, More NY, Pappo D. A Chiral Iron Disulfonate Catalyst for the Enantioselective Synthesis of 2-Amino-2'-hydroxy-1,1'-binaphthyls (NOBINs). J Am Chem Soc 2022; 144:3676-3684. [PMID: 35167756 DOI: 10.1021/jacs.1c13020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A novel type of chiral redox disulfonate iron complex for asymmetric catalysis is reported. The [Fe((Ra)-BINSate)]+ (BINSate = 1,1'-binaphthalene-2,2'-disulfonate) complex effectively promotes the enantioselective oxidative cross-coupling between 2-naphthols (1) and 2-aminonaphthalene derivatives (2), affording optically enriched (Ra)-2-amino-2'-hydroxy-1,1'-binaphthyls (NOBINs) with exceptional yields and enantioselective ratios (up to 99% yield and 96:4 er). The [Fe((Ra)-BINSate)]+ catalyst was designed as a chiral version of FeCl3 with multicoordination sites available for binding the two coupling partners 1 and 2 as well as the oxidant. Our structure-selectivity and activity study, which covered most of the important positions in the NOBIN scaffold, revealed the effect of different substitution patterns on the coupling efficiency and stereoselectivity.
Collapse
Affiliation(s)
- Alina Dyadyuk
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Vlada Vershinin
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hadas Shalit
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Hen Shalev
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nagnath Yadav More
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
10
|
Bashir MA, Wei J, Wang H, Zhong F, Zhai H. Recent advances in catalytic oxidative reactions of phenols and naphthalenols. Org Chem Front 2022. [DOI: 10.1039/d2qo00758d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review aims to provide an overview of oxidative phenol and naphthalenol transformations in nature and synthetic chemistry.
Collapse
Affiliation(s)
- Muhammad Adnan Bashir
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Jian Wei
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Huifei Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Nano-Micro Materials Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen 518055, China
- Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen 518055, China
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| |
Collapse
|
11
|
Mintz T, More NY, Gaster E, Pappo D. Iron-Catalyzed Oxidative Cross-Coupling of Phenols and Tyrosine Derivatives with 3-Alkyloxindoles. J Org Chem 2021; 86:18164-18178. [PMID: 34881564 DOI: 10.1021/acs.joc.1c02435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, a novel iron-catalyzed oxidative cross-coupling reaction between phenols and 3-alkyloxindole derivatives is reported. The efficient method, which is based on the FeCl3 catalyst and the t-BuOOt-Bu oxidant in 1,2-dichloroethane at 70 °C, affords 3-alkyl-3-(hydroxyaryl)oxindole compounds with a high degree of selectivity. The generality of the conditions was proven by reacting various substituted phenols, naphthols, and tyrosine derivatives with 3-alkyloxindoles. To apply the chemistry for the conjugation of tyrosine-containing short peptides with oxindolylalanine (Oia) derivatives, the reaction conditions were modified [Fe(O2CCF3)3 catalyst, t-BuOOt-Bu, HFIP, 70 °C], and amino acids with acid-stable N-protecting groups were used.
Collapse
Affiliation(s)
- Tomer Mintz
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nagnath Yadav More
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Eden Gaster
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
12
|
Oxidative cyclization of 5-aryl-1-benzyl-1,2,3-triazoles bearing electron-rich aromatic groups: ortho/ortho and ortho/ipso coupling. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02985-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|