1
|
Yao Z, Li P, Chen F, Nie J, Wang H, Tang L, Yang Y. Halogen bonding accelerated aerobic dehydrogenative aromatization for 4-aminoquinoline preparation. Org Biomol Chem 2025; 23:728-733. [PMID: 39623914 DOI: 10.1039/d4ob01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
This study presents a highly efficient method for 4-aminoquinoline derivative preparation under transition metal-free conditions. The process involves an aerobic oxidative dehydrative coupling of 2,3-dihydroquinolin-4(1H)-ones with various amines, including ammonia, resulting in high yields of the desired products. The method is also applicable to substituted 4-aminoquinoline derivative construction through a cyclization/dehydrative coupling cascade process starting from 2'-amino chalcones. Mechanistic studies reveal that iodine (I2) is consumed to produce 3-iodoquinolin-4-ol, which acts as a true catalyst with high catalytic efficacy (as low as 0.5 mol%). The presence of halogen bonding is critical in the inter-molecular transfer hydrogenation process to generate inactive quinolin-4-ol. Subsequently, using air/oxygen as the terminal oxidant, the iodine anion was oxidized to I2 to regenerate the 3-iodoquinolin-4-ol from quinolin-4-ol in the catalytic cycle. Key benefits of this methodology include its simplicity, transition metal-free conditions, environmentally-benign oxidant, and high atom economy, making it a valuable approach for synthesizing medicinally significant 4-aminoquinoline derivatives.
Collapse
Affiliation(s)
- Zikun Yao
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Pan Li
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Fei Chen
- The People's Hospital of Xishui, 564600 Xishui, P. R. China
| | - Jiuwei Nie
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Hui Wang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Lei Tang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| | - Yuanyong Yang
- School of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, 550014 Guiyang, P. R. China.
| |
Collapse
|
2
|
Liu L, Li J, Chen Y, Chen S, Xiao F, Deng GJ. Acid-Promoted Amination of Cyclohexenone for the Divergent Synthesis of p-Aminophenols and Tertiary Amines. J Org Chem 2024; 89:13826-13835. [PMID: 39295166 DOI: 10.1021/acs.joc.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A tunable method for the selective preparation of p-aminophenol and tertiary amines from a secondary amine and cyclohexenone has been described. Nonaromatic cyclohexenones were used as an aryl source. The desired tertiary amine products were generated when using I2 as the catalyst. This approach yields single-site-selective p-aminophenol without using I2, and the 18O labeling experiments demonstrated that hydroxyl oxygen originates from O2.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Shanping Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Zhao L, Weng Y, Zhou X, Wu G. Aminoselenation and Dehydroaromatization of Cyclohexanones with Anilines and Diselenides. Org Lett 2024. [PMID: 38809603 DOI: 10.1021/acs.orglett.4c01799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
A three-component cascade reaction involving cyclohexanones, anilines, and diaryl diselenides under metal-free conditions is reported. The ortho-selenation of cyclohexanones with diaryl diselenides, followed by sequential dehydroaromatization with anilines, enables the preparation of a variety of o-selanyl anilines in moderate to excellent yields. This innovative transformation is notable for its excellent tolerance of functional groups and is suitable for the late-stage modification of complex pharmaceuticals.
Collapse
Affiliation(s)
- Lin Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yujie Weng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xinyu Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
4
|
Huynh TN, Ong KTN, Dinh PT, Nguyen AT, Nguyen TT. Elemental Sulfur Promoted Cyclization of Aryl Hydrazones and Aryl Isothiocyanates Yielding 2-Imino-1,3,4-thiadiazoles. J Org Chem 2024; 89:3202-3210. [PMID: 38329896 DOI: 10.1021/acs.joc.3c02675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
We report a method for using elemental sulfur to facilitate the cyclization of aryl hydrazones and aryl isothiocyanates, affording biorelated 2-imino-1,3,4-thiadiazoles. Reactions progressed in the presence of elemental sulfur, N-methylmorpholine base, and DMSO solvent, while were tolerant of a wide range of functionalities including halogen, nitro, cyano, methylsulfonyl, and heterocyclic groups. The method appears to offer a general pathway for using simple, cheap, and stable reagents to afford triaryl-substituted 2-imino-1,3,4-thiadiazoles under relatively mild conditions.
Collapse
Affiliation(s)
- Tan N Huynh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Khanh T N Ong
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Phuong T Dinh
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| | - Anh T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
| | - Tung T Nguyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 84, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City 84, Vietnam
- VNU-HCM Key Laboratory for Functional Organic Materials, Ho Chi Minh City 84, Vietnam
| |
Collapse
|
5
|
Yuan P, Liu R, Zhu HM, Liao Z, Xiang JC, Wu AX. An I 2-DMSO catalytic manifold enabled aromatization for C-ring editing of podophyllotoxone. Org Biomol Chem 2023; 21:6468-6473. [PMID: 37539709 DOI: 10.1039/d3ob00927k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The precise aromatization of the C-ring of podophyllotoxone to access value-added dehydropodophyllotoxin derivatives conventionally requires the use of equivalent amounts of unsustainable oxidants and suffers from inefficiencies. Taking advantage of the hydridic character of the C8 and C8' of podophyllotoxone, we have developed an I2-DMSO catalytic manifold that enables a green and selective dehydrogenative aromatization to overcome these synthetic challenges. An unprecedented dehydrogenative amination of podophyllotoxone derivatives was also realized using aniline as the reaction partner.
Collapse
Affiliation(s)
- Peng Yuan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Hui-Min Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Zhixin Liao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.
| |
Collapse
|
6
|
Tang M, Zhang L, Mao G, Xiao F, Shao W, Deng G. Direct Thioamination of Cyclohexanones via Difunctionalization with Thiophenol and Aniline. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Minli Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Li Zhang
- College of Chemistry and Materials Engineering Huaihua University Huaihua 418000 People's Republic of China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 People's Republic of China
| | - Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Wen Shao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| | - Guo‐Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education College of Chemistry Xiangtan University Xiangtan 411105 People's Republic of China
| |
Collapse
|
7
|
Wang S, Jiang P, Li R, Yang M, Deng G. Progress in Selective Construction of Functional Aromatics with Cyclohexanone. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Xiao F, Tang M, Huang H, Deng GJ. Site-Selective Synthesis of Aryl Sulfides via Oxidative Aromatization of Cyclohexanones with Thiophenols. J Org Chem 2021; 87:512-523. [PMID: 34894678 DOI: 10.1021/acs.joc.1c02530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have introduced a metal-free facile access for the thiolation/aromatization of cyclohexanones with thiophenols to the corresponding aryl sulfides. The dehydroaromatic reaction of non-aromatic cyclohexanones proceeded smoothly using oxygen as a green oxidant.
Collapse
Affiliation(s)
- Fuhong Xiao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Minli Tang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
9
|
Chen J, Wen K, Wu Y, Deng J, Chen H, Yao X, Tang X. Synthesis of 3,4,5‐Triarylcyclohexanones from Dienones and 2‐Methylquinolines Based on a [5+1] Annulation. ChemistrySelect 2021. [DOI: 10.1002/slct.202103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiewen Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Kangmei Wen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Yinrong Wu
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Jie Deng
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Hongyue Chen
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xingang Yao
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| | - Xiaodong Tang
- Guangdong Provincial Key Laboratory of New Drug Screening School of Pharmaceutical Sciences Southern Medical University 1023 South Shatai Road, Baiyun District Guangzhou 510515 P. R. China
| |
Collapse
|
10
|
Zhang Z, Yang J, Yu R, Wu K, Bu J, Li S, Qian P, Sheng L. Efficient Synthesis of α‐Ketothioamides From α‐Nitroketones, Amines or DMF and Elemental Sulfur Under Oxidant‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhenlei Zhang
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Jiusi Yang
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Renjie Yu
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Kairui Wu
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Jiping Bu
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Shaoke Li
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Peng Qian
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| | - Liangquan Sheng
- School of Chemistry and Material Engineering Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions Fuyang Normal University Fuyang, Anhui 236037 P. R. China
| |
Collapse
|
11
|
Peng L, Ma L, Ran Y, Chen Y, Zeng Z. Metal-free three-component synthesis of thioamides from β-nitrostyrenes, amines and elemental sulfur. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Hu J, Hong H, Qin Y, Hu Y, Pu S, Liang G, Huang Y. Electrochemical Desulfurative Cyclization Accessing Oxazol-2-amine Derivatives via Intermolecular C-N/C-O Bond Formation. Org Lett 2021; 23:1016-1020. [PMID: 33475369 DOI: 10.1021/acs.orglett.0c04218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A practical protocol has been established to access diverse oxazol-2-amine derivatives in one step via the electrochemical desulfurative cyclization of isothiocyanates and α-amino ketones. On the basis of the cycle of in situ generation of iodine/desulfurative cyclization/iodide anion regeneration, the reaction is performed under metal-free and external-oxidant-free electrolytic conditions to achieve the formation of intermolecular C-O and C-N bonds, providing oxazol-2-amines in moderate to excellent yields.
Collapse
Affiliation(s)
- Jinhui Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Huanliang Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yongwei Qin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yunfei Hu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Suyun Pu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Gen Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| | - Yubing Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529090, P. R. China
| |
Collapse
|
13
|
Deng K, Huang H, Deng GJ. Recent advances in the transition metal-free oxidative dehydrogenative aromatization of cyclohexanones. Org Biomol Chem 2021; 19:6380-6391. [PMID: 34212968 DOI: 10.1039/d1ob00908g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cyclohexanone is a simple and widely available raw material that can be obtained from lignin biomass, highlighting its renewable and sustainable features. Cyclohexanone, as an important synthon in organic chemistry, has been demonstrated to be viable for constructing functionalized arenes and benzoheteroarenes, with recent extensive development on transition metal-free oxidative dehydrogenative aromatization. This review focuses on recent research progress on the transition metal-free derivation of cyclohexanones via oxidative dehydrogenative aromatization.
Collapse
Affiliation(s)
- Kun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|