1
|
Bain AI, Chinthapally K, Hunter AC, Sharma I. Dual Catalysis in Rhodium (II) Carbenoid Chemistry. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anae I Bain
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Kiran Chinthapally
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Arianne C. Hunter
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Indrajeet Sharma
- University of Oklahoma Chemistry and Biochemistry Stephenson Life Sciences Research Center101 Stephenson Parkway 73019-5251 Norman UNITED STATES
| |
Collapse
|
2
|
Liu X, Tian X, Huang J, Qian Y, Xu X, Kang Z, Hu W. Enantioselective Propargylation of Oxonium Ylide with α-Propargylic-3-Indolymethanol: Access to Chiral Propargylic Indoles. Org Lett 2022; 24:1027-1032. [PMID: 35060734 DOI: 10.1021/acs.orglett.1c04217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An enantioselective three-component reaction of α-propargylic-3-indolymethanol with diazoindolinone and alcohol under cocatalysis of Rh(II) and chiral phosphoric acid (CPA) has been reported. It proceeds through the regio- and enantiospecific addition of the in situ formed oxonium ylide to the α-propargylic indole iminium ion that is generated from 3-indolyl propargylic alcohol with CPA. This work features an asymmetric counteranion-directed propargylation of oxonium ylide, and provides an efficient access to chiral propargylic indole derivatives with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Kang Z, Chang W, Tian X, Fu X, Zhao W, Xu X, Liang Y, Hu W. Ternary Catalysis Enabled Three-Component Asymmetric Allylic Alkylation as a Concise Track to Chiral α,α-Disubstituted Ketones. J Am Chem Soc 2021; 143:20818-20827. [PMID: 34871492 DOI: 10.1021/jacs.1c09148] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Multicomponent reactions that involve interception of onium ylides through Aldol, Mannich, and Michael addition with corresponding bench-stable acceptors have demonstrated broad applications in synthetic chemistry. However, because of the high reactivity and transient survival of these in situ generated intermediates, the substitution-type interception process, especially the asymmetric catalytic version, remains hitherto unknown. Herein, a three-component asymmetric allylation of α-diazo carbonyl compounds with alcohols and allyl carbonates is disclosed by employing a ternary cooperative catalysis of achiral Pd-complex, Rh2(OAc)4, and chiral phosphoric acid CPA. This method represents the first example of three-component asymmetric allylic alkylation through an SN1-type trapping process, which involves a convergent assembly of two active intermediates, Pd-allyl species, and enol derived from onium ylides, providing an expeditious access to chiral α,α-disubstituted ketones in good to high yields with high to excellent enantioselectivity. Combined experimental and computational studies have shed light on the mechanism of this novel three-component reaction, including the critical role of Xantphos ligand and the origin of enantioselectivity.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenju Chang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xue Tian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiang Fu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Bakulina O, Inyutina A, Dar’in D, Krasavin M. Multicomponent Reactions Involving Diazo Reagents: A 5-Year Update. Molecules 2021; 26:6563. [PMID: 34770972 PMCID: PMC8587191 DOI: 10.3390/molecules26216563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes recent developments in multicomponent reactions of diazo compounds. The role of diazo reagent and the type of interaction between components was analyzed to structure the discussion. In contrast to previous reviews on related topics mostly focused on metal catalyzed transformations, a substantial amount of organocatalytic or catalyst-free methodologies is covered in this work.
Collapse
Affiliation(s)
- Olga Bakulina
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| | | | | | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| |
Collapse
|
5
|
Lu B, Liang X, Zhang J, Wang Z, Peng Q, Wang X. Dirhodium(II)/Xantphos-Catalyzed Relay Carbene Insertion and Allylic Alkylation Process: Reaction Development and Mechanistic Insights. J Am Chem Soc 2021; 143:11799-11810. [PMID: 34296866 DOI: 10.1021/jacs.1c05701] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although dirhodium-catalyzed multicomponent reactions of diazo compounds, nucleophiles and electrophiles have achieved great advance in organic synthesis, the introduction of allylic moiety as the third component via allylic metal intermediate remains a formidable challenge in this area. Herein, an attractive three-component reaction of readily accessible amines, diazo compounds, and allylic compounds enabled by a novel dirhodium(II)/Xantphos catalysis is disclosed, affording various architecturally complex and functionally diverse α-quaternary α-amino acid derivatives in good yields with high atom and step economy. Mechanistic studies indicate that the transformation is achieved through a relay dirhodium(II)-catalyzed carbene insertion and allylic alkylation process, in which the catalytic properties of dirhodium are effectively modified by the coordination with Xantphos, leading to good activity in the catalytic allylic alkylation process.
Collapse
Affiliation(s)
- Bin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xinyi Liang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Jinyu Zhang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Zijian Wang
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
6
|
Suleman M, Lu P, Wang Y. Recent advances in the synthesis of indole embedded heterocycles with 3-diazoindolin-2-imines. Org Chem Front 2021. [DOI: 10.1039/d0qo01515f] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preparations, reactivity and synthetic applications of 3-diazoindolin-2-imines, a valuable class of α-diazo amidines, are reviewed.
Collapse
Affiliation(s)
- Muhammad Suleman
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Ping Lu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yanguang Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
7
|
Guranova N, Kantin G, Dar'in D, Krasavin M. Diazo Glutaconimides: an Unexplored Type of Heterocyclic α‐Diazocarbonyl Compounds Conveniently Evolved into Pyridine‐2,6(1
H
,3
H
)‐diones and Oxazolo[5,4‐
b
]pyridin‐5(4
H
)‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Guranova
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Grigory Kantin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Dmitry Dar'in
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Mikhail Krasavin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| |
Collapse
|