1
|
Gonzalez G, Nechaev AA, Peshkov VA, Martínez-González E, Belyaev A, Hamza A, Shahsavan M, Pihko PM, Peljo P. Redox-Active Bisphosphonate-Based Viologens as Negolytes for Aqueous Organic Flow Batteries. Chemistry 2025; 31:e202404122. [PMID: 39826148 DOI: 10.1002/chem.202404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/26/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Viologen derivatives feature two reversible one-electron redox processes and have been extensively utilized in aqueous organic flow batteries (AOFBs). However, the early variant, methyl viologen (MVi), exhibits low stability in aqueous electrolytes, restricting its practical implementation in AOFB technology. In this context, leveraging the tunability of organic molecules, various substituents have been incorporated into the viologen core to achieve better stability, lower redox potential, and improved solubility. In this work, we introduce bisphosphonate-substituted viologens (BBPE-Vi and MBPE-Vi) as candidates for AOFBs. The bulkiness and negative charges of the bisphosphonate groups enhance the solubility and the electrostatic repulsion among viologen molecules, minimizing the bimolecular side reactions that lead to degradation. Additionally, the electron-rich character of this new substituent in its deprotonated state significantly lowers the redox potential. As a result, the proposed viologen derivatives exhibit high solubility (1.45 M in water) and stability (capacity decay of 0.009 %/cycle or 0.229 %/day when tested at 0.5 M). These parameters are coupled with the lowest redox potentials exceeding all previously reported viologens utilized in AOFBs (-0.503 V and -0.550 V against SHE for MBPE-Vi and BBPE-Vi, respectively).
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20014, Finland
| | - Anton A Nechaev
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, Jyväskylä, 40014, Finland
| | - Vsevolod A Peshkov
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, Jyväskylä, 40014, Finland
| | - Eduardo Martínez-González
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20014, Finland
| | - Andrey Belyaev
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, Joensuu, 80101, Finland
| | - Andrea Hamza
- Institute of Organic Chemistry, Research Centre for Natural Sciences, HUN-REN, Magyar Tudósok körútja 2, Budapest, 1117, Hungary
| | - Mahsa Shahsavan
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20014, Finland
| | - Petri M Pihko
- Department of Chemistry, University of Jyväskylä, P. O. Box 35, Jyväskylä, 40014, Finland
| | - Pekka Peljo
- Research Group of Battery Materials and Technologies, Department of Mechanical and Materials Engineering, Faculty of Technology, University of Turku, Turku, 20014, Finland
| |
Collapse
|
2
|
Marcos Anghinoni J, Irum, Ur Rashid H, João Lenardão E, Santos Silva M. 31P Nuclear Magnetic Resonance Spectroscopy for Monitoring Organic Reactions and Organic Compounds. CHEM REC 2024; 24:e202400132. [PMID: 39499103 DOI: 10.1002/tcr.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Indexed: 11/07/2024]
Abstract
31P NMR spectroscopy is a consolidated tool for the characterization of organophosphorus compounds and, more recently, for reaction monitoring. The evolution of organic synthesis, mainly due to the combination of elaborated building blocks with enabling technologies, generated great challenges to understand and to optimize the synthetic methodologies. In this sense, 31P NMR experiments also became a routine technique for reaction monitoring, accessing products and side products yields, chiral recognition, kinetic data, intermediates, as well as basic organic parameters, such as acid-base and hydrogen-bonding. This review deals with these aspects demonstrating the essential role of the 31P NMR spectroscopy. The recent publications (the last ten years) will be explored, discussing the experiments of 31P NMR and the strategies accomplished to detect and/or quantify distinct organophosphorus molecules, approaching reaction mechanism, stability, stereochemistry, and the utility as a probe.
Collapse
Affiliation(s)
- João Marcos Anghinoni
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Irum
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Haroon Ur Rashid
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Eder João Lenardão
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| | - Márcio Santos Silva
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, P. O. box 354, CEP 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
3
|
Alnajjar K, Wang K, Alvarado-Cruz I, Chavira C, Negahbani A, Nakhjiri M, Minard C, Garcia-Barboza B, Kashemirov BA, McKenna CE, Goodman MF, Sweasy JB. Modifying the Basicity of the dNTP Leaving Group Modulates Precatalytic Conformational Changes of DNA Polymerase β. Biochemistry 2024; 63:1412-1422. [PMID: 38780930 PMCID: PMC11155676 DOI: 10.1021/acs.biochem.4c00065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The catalytic function of DNA polymerase β (pol β) fulfills the gap-filling requirement of the base excision DNA repair pathway by incorporating a single nucleotide into a gapped DNA substrate resulting from the removal of damaged DNA bases. Most importantly, pol β can select the correct nucleotide from a pool of similarly structured nucleotides to incorporate into DNA in order to prevent the accumulation of mutations in the genome. Pol β is likely to employ various mechanisms for substrate selection. Here, we use dCTP analogues that have been modified at the β,γ-bridging group of the triphosphate moiety to monitor the effect of leaving group basicity of the incoming nucleotide on precatalytic conformational changes, which are important for catalysis and selectivity. It has been previously shown that there is a linear free energy relationship between leaving group pKa and the chemical transition state. Our results indicate that there is a similar relationship with the rate of a precatalytic conformational change, specifically, the closing of the fingers subdomain of pol β. In addition, by utilizing analogue β,γ-CHX stereoisomers, we identified that the orientation of the β,γ-bridging group relative to R183 is important for the rate of fingers closing, which directly influences chemistry.
Collapse
Affiliation(s)
- Khadijeh
S. Alnajjar
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Katarina Wang
- Therapeutic
Radiology Department, Yale University, New Haven, Connecticut 06520, United States
| | - Isabel Alvarado-Cruz
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Cristian Chavira
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
- Department
of Cellular and Molecular Medicine, University
of Arizona Cancer Center, University of Arizona, Tucson, Arizona 85724, United States
| | - Amirsoheil Negahbani
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Corinne Minard
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Beatriz Garcia-Barboza
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Boris A. Kashemirov
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Charles E. McKenna
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Myron F. Goodman
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Joann B. Sweasy
- Fred
and Pamela Buffett Cancer Center and Eppley Institute for Cancer Research, Omaha, Nebraska 68198, United States
| |
Collapse
|
4
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. J Am Chem Soc 2024; 146:3220-3229. [PMID: 38271668 PMCID: PMC10922802 DOI: 10.1021/jacs.3c11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Complex bacterial glycoconjugates drive interactions between pathogens, symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphosphosugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). The two distinct superfamilies of PGT enzymes (polytopic and monotopic) show striking differences in their structure and mechanism. We designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate of the UDP and UDP-sugar is replaced by a substituted methylene bisphosphonate (CXY-BPs; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). UBPs and UBPs incorporating an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate were evaluated as inhibitors of a polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics diphosphate with respect to its acid/base properties, the less basic CF2-BP conjugate more strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies, implicating a modified P-O- interaction with the structural Mg2+. For the monoPGT enzyme, the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, also exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are thus revealed as informative new mechanistic probes of PGTs that may aid development of novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Seebald LM, Haratipour P, Jacobs MR, Bernstein HM, Kashemirov BA, McKenna CE, Imperiali B. Uridine Bisphosphonates Differentiate Phosphoglycosyl Transferase Superfamilies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558431. [PMID: 37786673 PMCID: PMC10541605 DOI: 10.1101/2023.09.19.558431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Complex bacterial glycoconjugates are essential for bacterial survival, and drive interactions between pathogens and symbionts, and their human hosts. Glycoconjugate biosynthesis is initiated at the membrane interface by phosphoglycosyl transferases (PGTs), which catalyze the transfer of a phosphosugar from a soluble uridine diphospho-sugar (UDP-sugar) substrate to a membrane-bound polyprenol-phosphate (Pren-P). Two distinct superfamilies of PGT enzymes, denoted as polytopic and monotopic, carry out this reaction but show striking differences in structure and mechanism. With the goal of creating non-hydrolyzable mimics (UBP-sugars) of the UDP-sugar substrates as chemical probes to interrogate critical aspects of these essential enzymes, we designed and synthesized a series of uridine bisphosphonates (UBPs), wherein the diphosphate bridging oxygen of the UDP and UDP-sugar is replaced by a substituted methylene group (CXY; X/Y = F/F, Cl/Cl, (S)-H/F, (R)-H/F, H/H, CH3/CH3). These compounds, which incorporated as the conjugating sugar an N-acetylglucosamine (GlcNAc) substituent at the β-phosphonate, were evaluated as inhibitors of a representative polytopic PGT (WecA from Thermotoga maritima) and a monotopic PGT (PglC from Campylobacter jejuni). Although CHF-BP most closely mimics pyrophosphate with respect to its acid/base properties, the less basic CF2-BP conjugate most strongly inhibited PglC, whereas the more basic CH2-BP analogue was the strongest inhibitor of WecA. These surprising differences indicate different modes of ligand binding for the different PGT superfamilies implicating a modified P-O- interaction with the structural Mg2+, consistent with their catalytic divergence. Furthermore, at least for the monoPGT superfamily example, this was not the sole determinant of ligand binding: the two diastereomeric CHF-BP conjugates, which feature a chiral center at the Pα-CHF-Pβ carbon, exhibited strikingly different binding affinities and the inclusion of GlcNAc with the native α-anomer configuration significantly improved binding affinity. UBP-sugars are a valuable tool for elucidating the structures and mechanisms of the distinct PGT superfamilies and offer a promising scaffold to develop novel antibiotic agents for the exclusively prokaryotic monoPGT superfamily.
Collapse
Affiliation(s)
- Leah M. Seebald
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Michaela R. Jacobs
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Hannah M. Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Ebetino FH, Sun S, Cherian P, Roshandel S, Neighbors JD, Hu E, Dunford JE, Sedghizadeh PP, McKenna CE, Srinivasan V, Boeckman RK, Russell RGG. Bisphosphonates: The role of chemistry in understanding their biological actions and structure-activity relationships, and new directions for their therapeutic use. Bone 2022; 156:116289. [PMID: 34896359 PMCID: PMC11023620 DOI: 10.1016/j.bone.2021.116289] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/16/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022]
Abstract
The bisphosphonates ((HO)2P(O)CR1R2P(O)(OH)2, BPs) were first shown to inhibit bone resorption in the 1960s, but it was not until 30 years later that a detailed molecular understanding of the relationship between their varied chemical structures and biological activity was elucidated. In the 1990s and 2000s, several potent bisphosphonates containing nitrogen in their R2 side chains (N-BPs) were approved for clinical use including alendronate, risedronate, ibandronate, and zoledronate. These are now mostly generic drugs and remain the leading therapies for several major bone-related diseases, including osteoporosis and skeletal-related events associated with bone metastases. The early development of chemistry in this area was largely empirical and only a few common structural features related to strong binding to calcium phosphate were clear. Attempts to further develop structure-activity relationships to explain more dramatic pharmacological differences in vivo at first appeared inconclusive, and evidence for mechanisms underlying cellular effects on osteoclasts and macrophages only emerged after many years of research. The breakthrough came when the intracellular actions on the osteoclast were first shown for the simpler bisphosphonates, via the in vivo formation of P-C-P derivatives of ATP. The synthesis and biological evaluation of a large number of nitrogen-containing bisphosphonates in the 1980s and 1990s led to the key discovery that the antiresorptive effects of these more complex analogs on osteoclasts result mostly from their potency as inhibitors of the enzyme farnesyl diphosphate synthase (FDPS/FPPS). This key branch-point enzyme in the mevalonate pathway of cholesterol biosynthesis is important for the generation of isoprenoid lipids that are utilized for the post-translational modification of small GTP-binding proteins essential for osteoclast function. Since then, it has become even more clear that the overall pharmacological effects of individual bisphosphonates on bone depend upon two key properties: the affinity for bone mineral and inhibitory effects on biochemical targets within bone cells, in particular FDPS. Detailed enzyme-ligand crystal structure analysis began in the early 2000s and advances in our understanding of the structure-activity relationships, based on interactions with this target within the mevalonate pathway and related enzymes in osteoclasts and other cells have continued to be the focus of research efforts to this day. In addition, while many members of the bisphosphonate drug class share common properties, now it is more clear that chemical modifications to create variations in these properties may allow customization of BPs for different uses. Thus, as the appreciation for new potential opportunities with this drug class grows, new chemistry to allow ready access to an ever-widening variety of bisphosphonates continues to be developed. Potential new uses of the calcium phosphate binding mechanism of bisphosphonates for the targeting of other drugs to the skeleton, and effects discovered on other cellular targets, even at non-skeletal sites, continue to intrigue scientists in this research field.
Collapse
Affiliation(s)
- Frank H Ebetino
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA; Department of Chemistry, University of Rochester, Rochester, NY 14617, USA; Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
| | - Shuting Sun
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA.
| | - Philip Cherian
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | | | | | - Eric Hu
- BioVinc LLC, 2265 E. Foothill Blvd, Pasadena, CA 91107, USA
| | - James E Dunford
- Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK
| | - Parish P Sedghizadeh
- Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Venkat Srinivasan
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - Robert K Boeckman
- Department of Chemistry, University of Rochester, Rochester, NY 14617, USA
| | - R Graham G Russell
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK; Nuffield Department of Orthopaedics, Rheumatology & Musculoskeletal Sciences, The Oxford University Institute of Musculoskeletal Sciences, The Botnar Research Centre, Nuffield Orthopaedic Centre, Headington, Oxford OX3 7LD, UK; Mellanby Centre for Musculoskeletal Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Zheng Y, Haratipour P, Kashemirov BA, McKenna CE. Synthesis of 8-oxo-dGTP and its β,γ-CH 2-, β, γ-CHF-, and β, γ-CF 2- analogues. Tetrahedron Lett 2021; 67:152890. [PMID: 33716328 PMCID: PMC7951955 DOI: 10.1016/j.tetlet.2021.152890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Three novel 8-oxo-dGTP bisphosphonate analogues of 3 in which the bridging β,γ-oxygen is replaced by a methylene, fluoromethylene or difluoromethylene group (4-6, respectively) have been synthesized from 8-oxo-dGMP 2 by reaction of its morpholine 5'-phosphoramidate 14 or preferably, its N-methylimidazole 5'-phosphoramidate 15 with n-tributylammonium salts of the appropriate bisphosphonic acids, 11-13. The latter method also provides a convenient new route to 3. Analogues 4-6 may be useful as mechanistic probes for the role of 3 in abnormal DNA replication and repair.
Collapse
Affiliation(s)
- Yiying Zheng
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Pouya Haratipour
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Boris A. Kashemirov
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Charles E. McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Setterholm NA, Haratipour P, Kashemirov BA, McKenna CE, Joyce GF. Kinetic Effects of β,γ-Modified Deoxynucleoside 5'-Triphosphate Analogues on RNA-Catalyzed Polymerization of DNA. Biochemistry 2020; 60:1-5. [PMID: 33356161 DOI: 10.1021/acs.biochem.0c00779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A recently described DNA polymerase ribozyme, obtained by in vitro evolution, provides the opportunity to investigate mechanistic features of RNA catalysis using methods that previously had only been applied to DNA polymerase proteins. Insight can be gained into the transition state of the DNA polymerization reaction by studying the behavior of various β,γ-bridging substituted methylene (CXY; X, Y = H, halo, methyl) or imido (NH) dNTP analogues that differ with regard to the pKa4 of the bisphosphonate or imidodiphosphate leaving group. The apparent rate constant (kpol) of the polymerase ribozyme was determined for analogues of dGTP and dCTP that span a broad range of acidities for the leaving group, ranging from 7.8 for the CF2-bisphosphonate to 11.6 for the CHCH3-bisphosphonate. A Brønsted plot of log(kpol) versus pKa4 of the leaving group demonstrates linear free energy relationships (LFERs) for dihalo-, monohalo-, and non-halogen-substituted analogues of the dNTPs, with negative slopes, as has been observed for DNA polymerase proteins. The unsubstituted dNTPs have a faster catalytic rate than would be predicted from consideration of the linear free energy relationship alone, presumably due to a relatively more favorable interaction of the β,γ-bridging oxygen within the active site. Although the DNA polymerase ribozyme is considerably slower than DNA polymerase proteins, it exhibits a similar LFER fingerprint, suggesting mechanistic commonality pertaining to the buildup of negative charge in the transition state, despite the very different chemical compositions of the two catalysts.
Collapse
Affiliation(s)
- Noah A Setterholm
- The Salk Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Pouya Haratipour
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, Dana and David Dornsife College of Letters, Arts, and Sciences, University of Southern California, University Park Campus, Los Angeles, California 90089, United States
| | - Gerald F Joyce
- The Salk Institute, Jack H. Skirball Center for Chemical Biology and Proteomics, 10010 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|