1
|
Das S. Visible-light-induced decarboxylative cyclization. Org Biomol Chem 2025; 23:1016-1066. [PMID: 39688151 DOI: 10.1039/d4ob01744g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The application of visible light as an energy source provides a new avenue in organic transformation due to its mildness, efficiency and selectivity. In fact, recent years have witnessed remarkable advances in photoinduced decarboxylative coupling reactions involving carboxylic acids and their derivatives. Under appropriate photoredox conditions they undergo single electron transfer (SET), resulting in reactive radicals which can assemble with suitable reaction partners. Many types of carboxylic acid derivatives, such as amino acids, N-hydroxy phthalimide (NHPI) esters, α-keto acids, aliphatic/aromatic carboxylic acids, and [bis(difluoroacetoxy)iodo]benzene, can couple with a wide variety of substrates to build structurally complex molecules. The present review summarizes the last five years of progress (2020-2024) in the decarboxylative cyclization of carboxylic acids for constructing carbo-/heterocycles under visible-light irradiation. Annulation could be attained via organophotocatalysis (4CzIPN, g-C3N4, Eosin Y, methylene blue, etc.), metallaphotocatalysis or photocatalyst-free approaches. With an emphasis on the mechanistic rationales and scope of the reactions, this review focuses on recent trends in this emerging area.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, 24-Parganas (N), Pin-743165, India.
| |
Collapse
|
2
|
Mondal S, Mandal S, Mondal S, Midya SP, Ghosh P. Photocatalytic decarboxylation of free carboxylic acids and their functionalization. Chem Commun (Camb) 2024; 60:9645-9658. [PMID: 39120531 DOI: 10.1039/d4cc03189j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Visible light mediated decarboxylative functionalization of carboxylic acids and their derivatives has recently emerged as a novel and powerful toolkit for small molecule activation in diverse carbon-carbon and carbon-hetero bond forming reactions. Naturally abundant highly functionalized bench-stable carboxylic acid analogs have been employed as promising alternatives to non-trivial organometallic reagents for mild and eco-benign synthetic transformation with traceless CO2 by-products. In this highlight article, we focus on the development of various photodecarboxylative functionalization strategies along with intra/inter-molecular cyclization via concerted single electron transfer (SET) or energy transfer (ET) pathways. Moreover, widely explored carboxylic acids are systematically classified here into four categories; i.e., α-keto, aliphatic, α,β-unsaturated, and aromatic analogs for a concise overview to the readership. The association of decarboxylative radical species with coupling partners to construct C-C and C-N/O/S/P/X bonds for each analogous acid has been presented in brief.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| | - Siba P Midya
- Department of Chemistry, Jadavpur University, 188 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.
| |
Collapse
|
3
|
Wu X, Chen P, Gan M, Ji X, Deng GJ, Huang H. Redox-Neutral Cyclization of 2-Isocyanobiaryls through Photoredox/PPh 3 Dual Catalysis. Org Lett 2023; 25:9186-9190. [PMID: 38100717 DOI: 10.1021/acs.orglett.3c03744] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The photoredox/PPh3-mediated cyclization of 2-isocyanobiaryls has been developed. A substantial range of functional-group-rich phenanthridine derivatives were synthesized at room temperature in a highly selective and atom-economic manner. Mechanistic studies suggested that the cyclization process is probably mediated both by Ph3P radical cation with key 1,2-hydride transfer and hydrogen atom generated through O-H bond homolytic cleavage of Ph3P-OH radical intermediate.
Collapse
Affiliation(s)
- Xiaoting Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Pu Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Mengran Gan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
4
|
Chen JY, Wu HY, Song HY, Li HX, Jiang J, Yang TB, He WM. Visible-Light-Induced Annulation of Iodonium Ylides and 2-Isocyanobiaryls to Access 6-Arylated Phenanthridines. J Org Chem 2023. [PMID: 37262353 DOI: 10.1021/acs.joc.3c00380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN)-photocatalyzed cascade arylation/cyclization reaction of 2-isocyanobiaryls and iodonium ylides was established for the synthesis of 6-arylated phenanthridines. This is the first example of employing iodonium ylides as aryl radical sources in a visible-light-induced radical cascade cyclization reaction.
Collapse
Affiliation(s)
- Jin-Yang Chen
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong-Yu Wu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hai-Yang Song
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hong-Xia Li
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Jun Jiang
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tian-Bao Yang
- National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Min He
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang 421001, China
| |
Collapse
|
5
|
Shankar M, Swamy KCK. Cu(II)-Catalyzed Decarboxylative (4 + 2) Annulation of Coumarin-3-Carboxylic Acids with In Situ Generated α,β-Unsaturated Carbonyl Compounds from tert-Propargylic Alcohols. Org Lett 2023; 25:3397-3401. [PMID: 37154427 DOI: 10.1021/acs.orglett.3c00925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Cu(II)-catalyzed decarboxylative oxidative (4 + 2) annulation of coumarin-3-carboxylic acids with tert-propargylic alcohols, via the in situ generated α,β-unsaturated carbonyl compounds by the Meyer-Schuster rearrangement, has been developed. This protocol involving indirect C-H functionalization offers access to diverse naphthochromenone architectures with good to excellent yields.
Collapse
Affiliation(s)
- Mallepalli Shankar
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - K C Kumara Swamy
- School of Chemistry, University of Hyderabad, Hyderabad 500046, Telangana, India
| |
Collapse
|
6
|
Wagener T, Pierau M, Heusler A, Glorius F. Synthesis of Saturated N-Heterocycles via a Catalytic Hydrogenation Cascade. Adv Synth Catal 2022; 364:3366-3371. [PMID: 36589139 PMCID: PMC9796080 DOI: 10.1002/adsc.202200601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 01/04/2023]
Abstract
Saturated N-heterocycles are prominent motifs found in various natural products and pharmaceuticals. Despite the increasing interest in this class of compounds, the synthesis of saturated bicyclic azacycles requires tedious multi-step syntheses. Herein, we present a one-pot protocol for the synthesis of octahydroindoles, decahydroquinolines, and octahydroindolizines through a cascade reaction.
Collapse
Affiliation(s)
- Tobias Wagener
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Marco Pierau
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Arne Heusler
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| | - Frank Glorius
- Westfälische Wilhelms-Universität MünsterOrganisch-Chemisches InstitutCorrensstraße 4048149MünsterGermany
| |
Collapse
|
7
|
Li J, Wang S, Zhao J, Li P. Visible Light-Promoted Radical-Mediated Ring-Opening/Cyclization of Vinyl Benzotriazoles: An Alternative Approach to Phenanthridines. Org Lett 2022; 24:5977-5981. [PMID: 35943433 DOI: 10.1021/acs.orglett.2c02249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible light-promoted radical-mediated ring-opening/cyclization of vinyl benzotriazoles has been developed. The method provides an efficient and practical approach to synthesize functionalized phenanthridines from vinyl benzotriazoles with alkyl bromides under mild conditions. Significantly, the readily available and bench-stable vinyl benzotriazoles can serve as valuable alternative radical acceptors during the synthesis of phenanthridines.
Collapse
Affiliation(s)
- Jiaqi Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Shichong Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Jingjing Zhao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| | - Pan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
8
|
Shi W, Yang C, Guo L, Xia W. Photo-induced decarboxylative hydroacylation of α-oxocarboxylic acids with terminal alkynes by radical addition–translocation–cyclization in water. Org Chem Front 2022. [DOI: 10.1039/d2qo01424f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A photo-induced radical addition–translocation–cyclization (RATC) reaction of terminal alkynes and α-oxocarboxylic acids using water as the reaction medium is reported herein.
Collapse
Affiliation(s)
- Wei Shi
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Yechun W, Jintao Y. Recent Advances in the Decarboxylative Acylation/Cyclization of α-Keto Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202205025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Xu Z, Hu Y, Wang L, Sun M, Li P. Merging cobalt and photoredox catalysis for the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols. Org Biomol Chem 2021; 19:10112-10119. [PMID: 34757369 DOI: 10.1039/d1ob01721g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined cobalt and photoredox catalysis system to realize the C8-H alkoxylation of 1-naphthylamine derivatives with alcohols was developed. Using commercially available alkyl alcohols as raw materials and Co(OAc)2 and rose bengal as catalysts, 1-naphthylamine derivatives reacted with alcohols to generate the corresponding C8-H alkoxylation products in good yields.
Collapse
Affiliation(s)
- Zhaoliang Xu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Yu Hu
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China.
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| | - Mingli Sun
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang, 318000, P. R. China.
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China. .,Department of Chemistry, Anhui Polytechnic University, Wuhu, Anhui, 241000, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
11
|
Teng F, Du J, Xun C, Zhu M, Lu Z, Jiang H, Chen Y, Li Y, Gui QW. Photoinduced efficient synthesis of cyanoalkylsulfonylated oxindoles via sulfur dioxide insertion. Org Biomol Chem 2021; 19:8929-8933. [PMID: 34636391 DOI: 10.1039/d1ob01466h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A visible-light-promoted radical cascade reaction of N-arylacrylamide and cyclobutanone oxime esters with sulfur dioxide insertion is established. Mainly through the exploration of the visible light wavelength, it is found that the light source has a certain influence on the formation of cyanoalkylsulfonylated oxindoles, furnishing a range of sulfones in good to excellent yields. This protocol presents good functional group compatibility and does not require transition metals, photosensitizers, external bases, or oxidants.
Collapse
Affiliation(s)
- Fan Teng
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Juan Du
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China. .,International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Changping Xun
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Mengxue Zhu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Ziqin Lu
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Hongmei Jiang
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Yuling Chen
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Yu Li
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Qing-Wen Gui
- College of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Long L, Wang J, Gu L, Yang S, Qiao L, Luo G, Chen Z. Hypervalent Iodine(III)-Promoted Radical Oxidative C-H Annulation of Arylamines with α-Keto Acids. J Org Chem 2021; 86:12084-12092. [PMID: 34342452 DOI: 10.1021/acs.joc.1c01424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel catalyst-free radical oxidative C-H annulation reaction of arylamines with α-keto acids toward benzoxazin-2-ones synthesis under mild conditions was developed. This hypervalent iodine(III)-promoted process eliminated the use of a metal catalyst or additive with high levels of functional group tolerance. Hypervalent iodine(III) was both an oxidant and a radical initiator for this reaction. The synthetic utility of this method was confirmed by the synthesis of the natural product cephalandole A.
Collapse
Affiliation(s)
- Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Jieyan Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liuqing Gu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Shiguang Yang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liang Qiao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Guotian Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China
| |
Collapse
|
13
|
Xu C, Shen FQ, Feng G, Jin J. Visible-Light-Induced α-Amino C–H Bond Arylation Enabled by Electron Donor–Acceptor Complexes. Org Lett 2021; 23:3913-3918. [DOI: 10.1021/acs.orglett.1c00984] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chang Xu
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fang-Qi Shen
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Gaofeng Feng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
14
|
Zheng L, Cai L, Tao K, Xie Z, Lai Y, Guo W. Progress in Photoinduced Radical Reactions using Electron Donor‐Acceptor Complexes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100009] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Kailiang Tao
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Yin‐Long Lai
- College of Chemistry and Civil Engineering Shaoguan University Shaoguan 512005 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
15
|
Zhao B, Zhang Z, Ge Y, Li P, Miao T, Wang L. Photochemical synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones from α-keto acids and alkynes. Org Chem Front 2021. [DOI: 10.1039/d0qo01487g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient method for the synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones has been achieved from α-keto acids and alkynes through photo-initiated transformation, providing a range of products in good to excellent yields.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Zhen Zhang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Yu Ge
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Tao Miao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| |
Collapse
|