1
|
Tian H, Wang H, Xia J, Li S, Li H, Li Y, Li J, Hu Y. Visible-light-mediated photocatalytic aerobic oxidative synthesis of pyrazolo[4,3- d]pyrimidin-7(6 H)-ones and sildenafil. Org Biomol Chem 2025; 23:3320-3324. [PMID: 40072842 DOI: 10.1039/d5ob00233h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A novel, efficient and sustainable methodology involving visible-light-mediated construction of pyrazolo[4,3-d]pyrimidin-7(6H)-ones from easily available 4-amino-1-methyl-3-propyl-1H-pyrazole-5-carboxamide and aldehydes in the presence of 4CzIPN under an oxygen atmosphere has been developed. This photocatalytic system worked under mild conditions and avoided the use of any excess amount of toxic oxidants and transition metals. A variety of functionalized products were obtained in good to excellent yields. Notably, the marketed drug sildenafil was successfully synthesized. In addition, a plausible reaction mechanism involving a radical process has been proposed and further applications of this protocol are under way in our laboratory.
Collapse
Affiliation(s)
- Hongyou Tian
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Haijie Wang
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jiawei Xia
- Changzhou University - Wujin Campus, Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation enter, School of Petrochemical, Engineering, Gehu Road, Changzhou, CN 213164, China
| | - Shaozhong Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Huaju Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yanxing Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Jin Li
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Yongke Hu
- National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian 223003, China.
| |
Collapse
|
2
|
Aroua LM, Alminderej FM, Almuhaylan HR, Alosaimi AH, Medini F, Mohammed HA, Almahmoud SA, Khan RA, Mekni NH. Benzimidazole(s): synthons, bioactive lead structures, total synthesis, and the profiling of major bioactive categories. RSC Adv 2025; 15:7571-7608. [PMID: 40161353 PMCID: PMC11951861 DOI: 10.1039/d4ra08864f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/15/2025] [Indexed: 04/02/2025] Open
Abstract
Benzimidazole, a fused bicyclic compound with benzene and pentacyclic 1,3-diazole moeities, has a simple aromatic heterocyclic structure. The moiety has become an indispensable anchor for the development of new pharmacologically active products, and has yielded several therapeutic agents with anticancer, antihypertensive, antimicrobial, antifungal and antiulcer effects. Benzimidazoles, as synthetically feasible and pharmacophoric synthons, have been relentlessly pursued for the preparation of new analogues and derivatives, and they have successfully developed into some of the most sought-after and vital pharmacophores for drug discovery. The use of varied substituents and differing patterns around the benzimidazole nucleus has provided a wide spectrum of biological activities. In addition, the benzimidazole moiety constitutes a building block for the production of several drugs, drug candidates, new chemical entities, and lead molecules. The importance of this nucleus for bioactivity, e.g., antibacterial, antitubercular, antidiabetic, anticancer, antifungal, anti-inflammatory, analgesic, antioxidant, antihistaminic, and antimalarial activity, has led us to take note and provide an overview of the synthetic development approaches for various benzimidazole derivatives together with their biological actions. This review is projected to further assist in the design and development of new benzimidazole-based compounds for new and optimized pharmacologically active products towards new drug-development strategies.
Collapse
Affiliation(s)
- Lotfi M Aroua
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Fahad M Alminderej
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Hind R Almuhaylan
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Abdulelah H Alosaimi
- Department of Chemistry, College of Science, Qassim University Box: 6644 Qassim 51452 Kingdom of Saudi Arabia
| | - Faten Medini
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cedria, Carthage University 2050 Tunis Tunisia
| | - Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Suliman A Almahmoud
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University Qassim 51452 Saudi Arabia
| | - Nejib H Mekni
- Laboratory of Bio-Organic, Structural and Polymer Chemistry (LR99ES14), Department of Chemistry, Faculty of Sciences, University of Tunis El-Manar El-Manar 2092 Tunis Tunisia
- Department of Fundamental Science, High Institute of Medical Technologies of Tunis, El Manar University Tunis 1006 Tunisia
| |
Collapse
|
3
|
Singh A, Kumar M, Bhalla V. Regulating the Twisted Intramolecular Charge Transfer and Anti-heavy Atom Effect at Supramolecular Level for Favorable Photosensitizing Activity in Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62064-62081. [PMID: 39481003 DOI: 10.1021/acsami.4c13572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photosensitizing assemblies based on twisted intramolecular charge transfer (TICT) active donor-acceptor-donor (D-A-D) system BrTPA-Qx having bromine atoms at the periphery have been developed. Through strategic incorporation of bromine atoms at the para-position to the nitrogen-carbon bonds of phenyl rings at the periphery, halogen-halogen interactions are induced in BrTPA-Qx nanoassemblies in H2O:DMSO (99:1) solution. Hence, the anti-heavy atom effect is induced, and the limitations of TICT (dark excited state) and heavy atom effect (triplet deactivation via radiative decay) could be overcome. Because of TICT and anti-heavy atom effect, supramolecular BrTPA-Qx nanoassemblies demonstrate high efficiency in promoting activation of aerial oxygen via electron and energy transfer pathways in aqueous media. The significant influence of the stabilized TICT state and anti-heavy-atom effect in controlling the ROS generation was validated through in-depth solvent-dependent photophysical studies and investigations of the structure-activity relationship in several model compounds. The notable photosensitizing activity of BrTPA-Qx nanoassemblies is manifested in their ability to efficiently catalyze the oxidative coupling of benzylamine (via type I and type II mechanisms), Knoevenagel condensation of aromatic aldehydes (type II), and oxidative hydroxylation of arylboronic acids (type I) under mild conditions.
Collapse
Affiliation(s)
- Aditya Singh
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Manoj Kumar
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| | - Vandana Bhalla
- Department of Chemistry, UGC Sponsored-Centre of Advance Studies-II, Guru Nanak Dev University, Amritsar-143005, Punjab, India
| |
Collapse
|
4
|
Luo Z, Wang M, Jiang G, Wang X, Zhao L, Hu Z, Li H, Ji Q. A mild and convenient protocol for the synthesis of quinoxalin-2(1 H)-ones and benzimidazoles. RSC Adv 2024; 14:35386-35390. [PMID: 39502186 PMCID: PMC11537211 DOI: 10.1039/d4ra06887d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
We present a mild and simple method for the cyclization of N-protected o-phenylenediamines with carbonyl compounds in the presence of trifluoroacetic acid. This method reliably provides various substrates of benzimidazoles and quinoxalin-2(1H)-ones, with all reactions conducted at room temperature, demonstrating excellent substrate adaptability and a broad substrate scope.
Collapse
Affiliation(s)
- Zhenbiao Luo
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Mingyuan Wang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Guidong Jiang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Xinye Wang
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Liang Zhao
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Zhihui Hu
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Honghe Li
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| | - Qing Ji
- Department of Brewing Engineering, Moutai Institute Guizhou Renhuai 564507 China
| |
Collapse
|
5
|
Khushal A, Farooq U, Khan S, Rasul A, Wani TA, Zargar S, Shahzad SA, Bukhari SM, Khan NA. Bioactivity-Guided Synthesis: In Silico and In Vitro Studies of β-Glucosidase Inhibitors to Cope with Hepatic Cytotoxicity. Molecules 2023; 28:6548. [PMID: 37764324 PMCID: PMC10538174 DOI: 10.3390/molecules28186548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The major cause of hyperglycemia can generally be attributed to β-glucosidase as per its involvement in non-alcoholic fatty liver disease. This clinical condition leads to liver carcinoma (HepG2 cancer). The phthalimides and phthalamic acid classes possess inhibitory potential against glucosidase, forming the basis for designing new phthalimide and phthalamic acid analogs to test their ability as potent inhibitors of β-glucosidase. The study also covers in silico (molecular docking and MD simulations) and in vitro (β-glucosidase and HepG2 cancer cell line assays) analyses. The phthalimide and phthalamic acid derivatives were synthesized, followed by spectroscopic characterization. The mechanistic complexities associated with β-glucosidase inhibition were identified via the docking of the synthesized compounds inside the active site of the protein, and the results were analyzed in terms of the best binding energy and appropriate docking pose. The top-ranked compounds were subjected to extensive MD simulation studies to understand the mode of interaction of the synthesized compounds and binding energies, as well as the contribution of individual residues towards binding affinities. Lower RMSD/RMSF values were observed for 2c and 3c, respectively, in the active site, confirming more stabilized, ligand-bound complexes when compared to the free state. An anisotropic network model was used to unravel the role of loop fluctuation in the context of ligand binding and the dynamics that are distinct to the bound and free states, supported by a 3D surface plot. An in vitro study revealed that 1c (IC50 = 1.26 µM) is far better than standard acarbose (2.15 µM), confirming the potential of this compound against the target protein. Given the appreciable potential of the candidate compounds against β-glucosidase, the synthesized compounds were further tested for their cytotoxic activity against hepatic carcinoma on HepG2 cancer cell lines. The cytotoxicity profile of the synthesized compounds was performed against HepG2 cancer cell lines. The resultant IC50 value (0.048 µM) for 3c is better than the standard (thalidomide: IC50 0.053 µM). The results promise the hypothesis that the synthesized compounds might become potential drug candidates, given the fact that the β-glucosidase inhibition of 1c is 40% better than the standard, whereas compound 3c holds more anti-tumor activity (greater than 9%) against the HepG2 cell line than the known drug.
Collapse
Affiliation(s)
- Aneela Khushal
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Umar Farooq
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Sara Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Azhar Rasul
- Department of Zoology, GC University Faisalabad, Faisalabad 38000, Pakistan;
| | - Tanveer A. Wani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Seema Zargar
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia;
| | - Sohail Anjum Shahzad
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| | - Nazeer Ahmad Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan; (A.K.); (S.A.S.); (S.M.B.); (N.A.K.)
| |
Collapse
|
6
|
Choudhary A, Viradiya RH, Ghoghari RN, Chikhalia KH. Recent Scenario for the Synthesis of Benzimidazole Moiety(2020–2022). ChemistrySelect 2023. [DOI: 10.1002/slct.202204910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Annu Choudhary
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Riddhi H. Viradiya
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Rajnikant N. Ghoghari
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| | - Kishor H. Chikhalia
- Department of Chemistry Veer Narmad South Gujarat University Surat 395007 Gujarat India
| |
Collapse
|
7
|
Basoccu F, Cuccu F, Caboni P, De Luca L, Porcheddu A. Mechanochemistry Frees Thiourea Dioxide (TDO) from the 'Veils' of Solvent, Exposing All Its Reactivity. Molecules 2023; 28:molecules28052239. [PMID: 36903485 PMCID: PMC10005452 DOI: 10.3390/molecules28052239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
The synthesis of nitrogen-based heterocycles has always been considered essential in developing pharmaceuticals in medicine and agriculture. This explains why various synthetic approaches have been proposed in recent decades. However performing as methods, they often imply harsh conditions or the employment of toxic solvents and dangerous reagents. Mechanochemistry is undoubtedly one of the most promising technologies currently used for reducing any possible environmental impact, addressing the worldwide interest in counteracting environmental pollution. Following this line, we propose a new mechanochemical protocol for synthesizing various heterocyclic classes by exploiting thiourea dioxide (TDO)'s reducing proprieties and electrophilic nature. Simultaneously exploiting the low cost of a component of the textile industry such as TDO and all the advantages brought by a green technique such as mechanochemistry, we plot a route towards a more sustainable and eco-friendly methodology for preparing heterocyclic moieties.
Collapse
Affiliation(s)
- Francesco Basoccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Federico Cuccu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Pietro Caboni
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Lidia De Luca
- Department of Chemical, Physical, Mathematical, and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Andrea Porcheddu
- Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy
- Correspondence:
| |
Collapse
|
8
|
Pang H, Huang D, Zhu Y, Zhao X, Xiang Y. One-pot cascade construction of nonsubstituted quinoline-bridged covalent organic frameworks. Chem Sci 2023; 14:1543-1550. [PMID: 36794200 PMCID: PMC9906769 DOI: 10.1039/d2sc06044b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 01/09/2023] Open
Abstract
Irreversible locking of imine linkages into stable linkages represents a promising strategy to improve the robustness and functionality of covalent organic frameworks (COFs). We report, for the first time, a multi-component one-pot reaction (OPR) for imine annulation to construct highly stable nonsubstituted quinoline-bridged COFs (NQ-COFs), and that equilibrium regulation of reversible/irreversible cascade reactions by addition of MgSO4 desiccant is crucial to achieve high conversion efficiency and crystallinity. The higher long-range order and surface area of NQ-COFs synthesized by this OPR than those of the reported two-step post-synthetic modification (PSM) facilitate charge carrier transfer and photogeneration ability of superoxide radicals (O2˙-), which makes these NQ-COFs more efficient photocatalysts for O2˙- mediated synthesis of 2-benzimidazole derivatives. The general applicability of this synthetic strategy is demonstrated by fabricating 12 other crystalline NQ-COFs with a diversity of topologies and functional groups.
Collapse
Affiliation(s)
- Huaji Pang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Dekang Huang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China
| | - Yanqiu Zhu
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Xiaodong Zhao
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| | - Yonggang Xiang
- Department of Chemistry, College of Science, Huazhong Agricultural University Wuhan Hubei 430070 China .,College of Resources and Environment, Huazhong Agricultural University 430070 Wuhan P. R. China
| |
Collapse
|
9
|
Efficient synthesis of 2-aryl benzothiazoles mediated by Vitreoscilla hemoglobin. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Wanjari PJ, Saha N, Dubey G, Bharatam PV. Metal-free methods for the generation of benzimidazoles and 2-aminobenzimidazoles. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
An efficient low melting mixture mediated green approach for the synthesis of 2-substituted benzothiazoles and benzimidazoles. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Xiong Y, Wang K, Ma L, Zhu J, Miao Y, Gong L, Mu X, Wan J, Li R. Bimetallic CoMoO
4
@C nanorod catalyzes one‐pot synthesis of benzimidazoles from benzyl alcohol and
o
‐phenylendiamine without alkali. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yucong Xiong
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Kaizhi Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry Fudan University Shanghai China
| | - Lei Ma
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Jiukang Zhu
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Yujia Miao
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Li Gong
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Xiao Mu
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Jiang Wan
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| | - Rong Li
- College of Chemistry and Chemical Engineering Lanzhou University Lanzhou China
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) Lanzhou University Lanzhou China
| |
Collapse
|
13
|
Li X, Liu Z, Hong H, Han L, Zhu N. Catalyst-free reductive cyclization of bis(2-aminophenyl) disulfide with CO 2 in the presence of BH 3NH 3 to synthesize 2-unsubstituted benzothiazole derivatives. RSC Adv 2022; 12:18107-18114. [PMID: 35800324 PMCID: PMC9208316 DOI: 10.1039/d2ra03134e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
An efficient and catalyst-free methodology for the reductive cyclization of various disulfides using BH3NH3 as a reductant and CO2 as a C1 resource was developed.
Collapse
Affiliation(s)
- Xiao Li
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Zhenbao Liu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Hailong Hong
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| | - Limin Han
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
- Wu Hai Vocational &Technical College, Wu Hai, 010070, China
| | - Ning Zhu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
- Key Laboratory of CO2 Resource Utilization at Universities of Inner Mongolia Autonomous Region, Hohhot, 010051, China
- Inner Mongolia Engineering Research Center for CO2 Capture and Utilization, Hohhot, 010051, China
| |
Collapse
|