1
|
Du P, Yang B, Chow ATS, Shi D, Wong KMC, Wang J. From Quencher to Promoter: Revisiting the Role of 2,4,6-Trimethylphenol (TMP) in Triplet-State Photochemistry of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4444-4454. [PMID: 39999104 DOI: 10.1021/acs.est.4c09859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Triplet-state dissolved organic matter (3DOM*) plays a crucial role in environmental aquatic photochemistry, with 2,4,6-trimethylphenol (TMP) frequently used as a chemical probe or quencher due to its high reactivity with 3DOM*. However, the influence of TMP-derived oxidation intermediates on the target photochemical reactions has not been comprehensively examined. This study investigated TMP's effect on the photolysis of sulfamethoxazole (SMX), a common antibiotic found in natural waters, in the presence of different DOM sources or model photosensitizer. Contrary to expectation, TMP significantly accelerated SMX photolysis, with the extent of enhancement depending on TMP and DOM concentrations. Laser flash photolysis and kinetic modeling suggested the long-lived TMP-derived reactive species (TMP-RS), including phenoxyl radicals, semiquinone radicals, and quinones, as the key factors in this process. Unlike 3DOM*, TMP-RS may react with SMX with the formation of non-SMX•+ intermediates. This process prevents the reduction of SMX•+ and the subsequent regeneration of SMX. The kinetic model successfully predicts the dynamic contributions of various factors to SMX oxidation during the reaction, highlighting the critical role of TMP-RS. This study advances our understanding of TMP's involvement in triplet-state photochemistry and suggests a reconsideration of the role long-lived organic RSs play in the transformation of environmental micropollutants.
Collapse
Affiliation(s)
- Penghui Du
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Biwei Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Alex Tat-Shing Chow
- Department of Earth and Environmental Sciences, The Chinese University of Hong Kong,Shatin, Hong Kong SAR 999077, China
| | - Dongliang Shi
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Keith Man-Chung Wong
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
2
|
Lucena V, Rodriguez JB, Szajnman SH, Bonesi SM. Effect of Confined and Micellar Media on the Photo-Fries Reaction of 4-Phenoxyphenol Esters: A Valuable Key Step Toward the Preparation of Aryloxyethyl Selenocyanates. J Org Chem 2025; 90:2735-2748. [PMID: 39930561 DOI: 10.1021/acs.joc.4c02969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
The irradiation of a series of 4-phenoxyphenol esters in a sustainable micellar environment has been studied from both preparative and mechanistic viewpoints, and the results were compared with those obtained in cyclohexane solutions. These esters underwent the photo-Fries rearrangement reaction, and the microheterogeneous media induced a noticeable selectivity in favor of the ortho-regioisomer formation with yields up to 96% yield. UV-visible and 1D and 2D NMR (DCS, NOESY, and DOSY) spectroscopies have been employed to determine the binding constant (Kb) and the location of the esters within the hydrophobic core of the spherical micelles. Furthermore, the diffusion coefficient (D) and hydrodynamic radius (rs) were also measured. Application of the photo-Fries reaction of esters in microheterogeneous media as a key step in a multistep sequence has been carried out, leading to the preparation of (4-phenoxy)-(2-n-pentylcarbonyl)-phenoxyethyl selenocyanate (10), an interesting target molecule showing potential biological activity against Trypanosoma cruzi.
Collapse
Affiliation(s)
- Valentín Lucena
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a Química Orgánica (UMYMFOR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Unidad de Microanálisis y Métodos Físicos aplicados a Química Orgánica (UMYMFOR), CONICET, Buenos Aires C1428EGA, Argentina
| | - Sergio M Bonesi
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina
- Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), CONICET, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
3
|
Guo Y, Ge L, Phillips DL, Ma J, Fang Y. Different Reaction Mechanisms Triggered by the Meta Effect: Photoinduced Generation of Quinone Methides from Hydroxybiphenyl Derivatives. J Phys Chem Lett 2024; 15:8569-8576. [PMID: 39140706 DOI: 10.1021/acs.jpclett.4c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A series of sterically congested quinone methides (QMs) exhibit photoinduced antiproliferative activity against some human cancer cell lines. To elucidate the structure-reactivity relationship and details of mechanisms of the photogeneration of sterically congested QMs, we chose phenylphenol derivatives 1-3 as QM precursors and investigated their photodehydration processes in aqueous solutions using ultrafast spectroscopy and theoretical computations. We found that meta derivatives 1 and 2 undergo water-mediated excited-state proton transfer (ESPT) from the phenol OH, followed by expulsion of the OH- to form QMs. By comparison, para derivative 3 proceeds via water-mediated ESPT from H2O to benzyl alcohol coupled with dehydration as the first step, delivering a cation intermediate, which further deprotonates to yield QM. Such results would help chemists understand more about the meta effects in photochemistry and about ESPT and would help synthetic chemists design sterically congested QM precursors with extraordinary reactivities and expand applications of QMs in biological and medical systems.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lingfeng Ge
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R. 999077, P. R. China
| | - Jiani Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Gao X, Yang Z, Zhang W, Pan B. Carbon redirection via tunable Fenton-like reactions under nanoconfinement toward sustainable water treatment. Nat Commun 2024; 15:2808. [PMID: 38561360 PMCID: PMC10985074 DOI: 10.1038/s41467-024-47269-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024] Open
Abstract
The ongoing pattern shift in water treatment from pollution control to energy recovery challenges the energy-intensive chemical oxidation processes that have been developed for over a century. Redirecting the pathways of carbon evolution from molecular fragmentation to polymerization is critical for energy harvesting during chemical oxidation, yet the regulation means remain to be exploited. Herein, by confining the widely-studied oxidation system-Mn3O4 catalytic activation of peroxymonosulfate-inside amorphous carbon nanotubes (ACNTs), we demonstrate that the pathways of contaminant conversion can be readily modulated by spatial nanoconfinement. Reducing the pore size of ACNTs from 120 to 20 nm monotonously improves the pathway selectivity toward oligomers, with the yield one order of magnitude higher under 20-nm nanoconfinement than in bulk. The interactions of Mn3O4 with ACNTs, reactant enrichment, and pH lowering under nanoconfinement are evidenced to collectively account for the enhanced selectivity toward polymerization. This work provides an adaptive paradigm for carbon redirection in a variety of catalytic oxidation processes toward energy harvesting and sustainable water purification.
Collapse
Affiliation(s)
- Xiang Gao
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing, China
| | - Zhichao Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing, China
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing, China
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing, China.
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing, China.
| |
Collapse
|
5
|
Port-Lougarre Y, Gourlaouen C, Vileno B, Giménez-Arnau E. Antioxidant Activity and Skin Sensitization of Eugenol and Isoeugenol: Two Sides of the Same Coin? Chem Res Toxicol 2023; 36:1804-1813. [PMID: 37922503 DOI: 10.1021/acs.chemrestox.3c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
Eugenol and isoeugenol are well acknowledged to possess antioxidant and thus cytoprotective activities. Yet both compounds are also important skin sensitizers, compelling the cosmetics and fragrance industries to notify their presence in manufactured products. While they are structurally very similar, they show significant differences in their sensitization properties. Consequently, eugenol and isoeugenol have been the subject of many mechanistic studies where the final oxidation forms, electrophilic ortho-quinone and quinone methide, are blamed as the reactive species forming an antigenic complex with nucleophilic residues of skin proteins, inducing skin sensitization. However, radical mechanisms could compete with such an electrophilic-nucleophilic pathway. The antioxidant activity results from neutralizing reactive oxygen radicals by the release of the phenolic hydrogen atom. The so-formed phenoxyl radicals can then fully delocalize upon the structure, becoming potentially reactive toward skin proteins at several positions. To obtain in-depth insights into such reactivity, we investigated in situ the formation of radicals from eugenol and isoeugenol using electron paramagnetic resonance combined with spin trapping in reconstructed human epidermis (RHE), mimicking human skin and closer to what may happen in vivo. Two modes of radical initiation were used, exposing RHE to (i) horseradish peroxidase (HRP), complementing RHE metabolic capacities, and mimicking peroxidases present in vivo or (ii) solar light using a AM 1.5 solar simulator. In both experimental approaches, where the antioxidant character of both compounds is revealed, oxygen- and carbon-centered radicals were formed in RHE. Our hypothesis is that such carbon radicals are relevant candidates to form antigenic entities prior to conversion into electrophilic quinones. On this basis, these studies suggest that pro- or prehapten fingerprints could be advanced depending on the radical initiation method. The introduction of HRP suggested that eugenol and isoeugenol behave as prohaptens, while when exposed to light, a prehapten nature could be highlighted.
Collapse
Affiliation(s)
- Yannick Port-Lougarre
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Christophe Gourlaouen
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Bertrand Vileno
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Elena Giménez-Arnau
- Institut de Chimie, UMR 7177, CNRS, Université de Strasbourg, 4 Rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
6
|
Choi J, Jang M. Suppression of the phenolic SOA formation in the presence of electrolytic inorganic seed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158082. [PMID: 35985582 DOI: 10.1016/j.scitotenv.2022.158082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/28/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds are largely attributed to wildfire gases and rapidly react with atmospheric oxidants to form persistent phenoxy free radicals, which influence atmospheric chemistry and secondary organic aerosol (SOA) formation. In this study, phenol or o-cresol was photochemically oxidized under various conditions (NOx levels, humidity, and seed conditions) in an outdoor photochemical reactor. Unexpectedly, SOA growth of both phenols was suppressed in the presence of salted aqueous aerosol compared to non-seed SOA. This discovery is different from the typical SOA formation of aromatic or biogenic hydrocarbons, which show noticeably higher SOA yields via organic aqueous reactions. Phenol, o-cresol, and their phenolic products (e.g., catechols) are absorbed in aqueous aerosol and form phenoxy radicals via heterogeneous reactions under sunlight. The resulting phenoxy radicals are redistributed between the gas and particle phases. Gaseous phenoxy radicals quickly react with ozone to form phenyl peroxide radicals and regenerated through a NOx cycle to retard phenol oxidation and SOA formation. The explicit oxidation mechanisms of phenol or o-cresol in the absence of aqueous phase were derived including the Master Chemical Mechanism (MCM v3.3.1) and the path for peroxy radical adducts originating from the addition of an OH radical to phenols to form low volatility products (e.g., multi-hydroxy aromatics). The resulting gas mechanisms of phenol or o-cresol were, then, applied to the Unified Partitioning Aerosol Phase Reaction (UNIPAR) model to predict SOA formation via multiphase partitioning of organics and aerosol-phase oligomerization. The model well simulated chamber-generated phenolic SOA in absence of wet-inorganic seed, but significantly overestimated SOA mass in presence of wet seed. This study suggests that heterogeneous chemistry to form phenoxy radicals needs to be included to improve SOA prediction from phenols. The suppression of atmospheric oxidation due to phenoxy radicals in wet inorganic aerosol can explain the low SOA formation during wildfire episodes.
Collapse
Affiliation(s)
- Jiwon Choi
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Myoseon Jang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
7
|
Photodehydration mechanisms of quinone methide formation from 2-naphthol derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Forjan M, Zgrablić G, Vdović S, Šekutor M, Basarić N, Kabacinski P, Nazari Haghighi Pashaki M, Frey HM, Cannizzo A, Cerullo G. Photogeneration of quinone methide from adamantylphenol in an ultrafast non-adiabatic dehydration reaction. Phys Chem Chem Phys 2022; 24:4384-4393. [PMID: 35112685 PMCID: PMC8849006 DOI: 10.1039/d1cp05690e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
The ultrafast photochemical reaction of quinone methide (QM) formation from adamantylphenol was monitored in real time using femtosecond transient absorption spectroscopy and fluorescence upconversion in solution at room temperature. Experiments were complemented by theoretical studies simulating the reaction pathway and elucidating its mechanism. Excitation with sub-20 fs UV pulses and broadband probing revealed ultrafast formation of the long-lived QM intermediate directly in the ground state, occurring with a time constant of around 100 fs. UV-vis transient absorption data covering temporal dynamics from femtoseconds to hundreds of milliseconds revealed persistence of the absorption band assigned to QM and partially overlapped with other contributions tentatively assigned to triplet excited states of the adamantyl derivative and the phenoxyl radical that are clearly distinguished by their evolution on different time scales. Our data, together with the computations, provide evidence of a non-adiabatic photodehydration reaction, which leads to the formation of QM in the ground state via a conical intersection, circumventing the generation of a transient QM excited state.
Collapse
Affiliation(s)
- Mateo Forjan
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Goran Zgrablić
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Silvije Vdović
- Institute of Physics, Bijenička cesta 46, 10 000 Zagreb, Croatia.
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Piotr Kabacinski
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | | | - Hans-Martin Frey
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Andrea Cannizzo
- Institute of Applied Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
9
|
Sanmartín RA, Salum ML, Protti S, Mella M, Bonesi SM. The Photoinduced Electrocyclization Reaction of Triphenylamine (TPA) in Sustainable and Confined Micellar Solutions: A Steady‐State and Laser Flash Photolysis Approach. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rocío A. Sanmartín
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica Buenos Aires C1428EGA Argentina
- CONICET – Universidad de Buenos Aires Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires C1428EGA Argentina
| | - María L. Salum
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica Buenos Aires C1428EGA Argentina
- CONICET – Universidad de Buenos Aires Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires C1428EGA Argentina
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry University of Pavia V.le Taramelli 12 27100 Pavia Italy
| | - Mariella Mella
- Department of Chemistry University of Pavia V.le Taramelli 12 27100 Pavia Italy
| | - Sergio M. Bonesi
- Universidad de Buenos Aires Facultad de Ciencias Exactas y Naturales Departamento de Química Orgánica Buenos Aires C1428EGA Argentina
- CONICET – Universidad de Buenos Aires Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR) Buenos Aires C1428EGA Argentina
- PhotoGreen Lab, Department of Chemistry University of Pavia V.le Taramelli 12 27100 Pavia Italy
| |
Collapse
|
10
|
Quindt MI, Gola GF, Rodriguez CR, Ramirez JA, Bonesi SM. Product selectivity in the photoreaction of aryl sulfonates and mesylate of estrone derivatives in sustainable and micellar media: a steady-state investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02989h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photochemical reaction of sulfonate steroids in a sustainable environment was carried out successfully under steady-state conditions. Significant selectivity in photoproduct formation was also observed.
Collapse
Affiliation(s)
- Matías I. Quindt
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| | - Gabriel F. Gola
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Cristian R. Rodriguez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Javier A. Ramirez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR), Buenos Aires, Argentina
| | - Sergio M. Bonesi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Orgánica, Buenos Aires, Argentina
- CONICET–Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Buenos Aires, Argentina
| |
Collapse
|
11
|
Bonesi SM, Protti S, Capucciati A, Fagnoni M. Photogenerated aryl mesylate and aryl diethyl phosphate radical cations: a time-resolved spectroscopy investigation. NEW J CHEM 2022. [DOI: 10.1039/d2nj01755e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photoinduced electron transfer reaction of selected aryl sulfonates and phosphates with K2S2O8 in a MeCN water (9 : 1) mixture has been investigated by LFP experiments.
Collapse
Affiliation(s)
- Sergio M. Bonesi
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET—Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| | | | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, V.leTaramelli 12, 27100, Pavia, Italy
| |
Collapse
|
12
|
Guo Y, Li X, Ma J, Phillips DL. Reaction Mechanisms of Photoinduced Quinone Methide Intermediates Formed via Excited-State Intramolecular Proton Transfer or Water-Assisted Excited-State Proton Transfer of 4-(2-Hydroxyphenyl)pyridine. J Phys Chem Lett 2021; 12:11666-11672. [PMID: 34825824 DOI: 10.1021/acs.jpclett.1c03600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond and nanosecond transient absorption spectroscopies combined with theoretical calculations were performed to investigate the formation mechanisms of quinone methides (QMs) from 4-(2-hydroxyphenyl)pyridine (1). In acetonitrile (ACN), the singlet excited state of 1 (1(S1)) with the cis-form underwent a thermodynamically favorable and ultrafast ESIPT to produce the singlet excited state QM, which could either relax first into highly vibrational states of its ground state followed by hydrogen transfer to return to the starting compound or alternatively may undergo a dehydrogenation to produce a radical species (1-R). In ACN-H2O, 1(S1) interacted with water molecules to form a solvated species, which induced water-assisted ESPT to the pyridine nitrogen to generate the singlet excited state QM in a concerted asynchronous manner that was initiated by deprotonation of the phenolic OH. These results provide deeper insights into the formation mechanisms of QMs in different solvent environments, which is important in the application of QMs in biological and chemical systems as well as in the design of molecules for efficient QM formation.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xuyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
13
|
Induced selectivity in the photochemistry of estrone derivatives in sustainable and micellar environment: preparative and mechanistic studies. Photochem Photobiol Sci 2021; 21:625-644. [PMID: 34599462 DOI: 10.1007/s43630-021-00107-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/16/2022]
Abstract
In this study, we carried out preparative and mechanistic studies on the photochemical reaction of a series of 3-acylestrone derivatives in confined and sustainable micellar environment under steady-state conditions and the results were compared with those obtained in cyclohexane solution. The aim of this work is mainly focused to show whether the nature of the surfactant (cationic, neutral and anionic) leads to noticeable selectivity in the photoproduct formation. The 3-acylestrone derivatives underwent the photo-Fries rearrangement, with concomitant homolytic fragmentation of the ester group and [1;3]-acyl migration. This pathway afforded the ortho-acyl estrone derivatives, the main photoproducts together with estrone. However, epimerization of the ortho regioisomer 2-acetylestrone and estrone through Norrish Type I photoreaction occurred involving the fragmentation of the C-α at the carbonyl group (C-17) of the steroid. UV-visible and 2D-NMR (NOESY) spectroscopies have been employed to measure the binding constant Kb and the location of the steroids within the hydrophobic core of the micelle.
Collapse
|
14
|
Zlatić K, Cindrić M, Antol I, Uzelac L, Mihaljević B, Kralj M, Basarić N. Wavelength dependent photochemistry of BODIPY-phenols and their applications in the fluorescent labeling of proteins. Org Biomol Chem 2021; 19:4891-4903. [PMID: 34106112 DOI: 10.1039/d1ob00278c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A series of BODIPY dyes were synthesized, that were at the 3, or 3 and 5 positions, substituted by photochemically reactive quinone methide (QM) precursor moieties. Fluorescence properties of the molecules were investigated and we demonstrated that the molecules undergo wavelength dependent photochemistry. Photodeamination to deliver QMs takes place only upon excitation to higher excited singlet states, showing unusual anti-Kasha photochemical reactivity. The findings were corroborated by TD-DFT computations. Laser flash photolysis experiments could not reveal QMs due to the low efficiency of their formation, but enabled the detection of phenoxyl radicals. The applicability of the molecules for the fluorescent labeling of bovine serum albumin as a model protein upon photoexcitation at 350 nm was demonstrated.
Collapse
Affiliation(s)
- Katarina Zlatić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Matej Cindrić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Ivana Antol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Branka Mihaljević
- Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
15
|
Bonesi S, Protti S, Fagnoni M. Photohomolysis and Photoheterolysis in Aryl Sulfonates and Aryl Phosphates. Chemistry 2021; 27:6315-6323. [PMID: 33481315 DOI: 10.1002/chem.202005426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/24/2023]
Abstract
The photochemical behaviour of selected aryl sulfonates and phosphates (ArOX) in polar and nonpolar media has been investigated by laser flash photolysis (LFP) experiments. Two main pathways have been identified, namely the photohomolysis of the ArO-X bond or the photoheterolysis of the Ar-OX bond depending on the nature of the leaving group (OX) and on the nature of the substituents on the aromatic ring. In nonpolar solvents the esters are quite photostable due to an efficient triplet deactivation. In polar solvents, the homolytic fragmentation of the ArO-S bond from the exited singlets was found in aryl sulfonates bearing moderately electron-donating groups as well as electron-withdrawing groups. In electron-rich aryl phosphates and sulfonates photoheterolysis of the Ar-OP/Ar-OS bond took place as the exclusive pathway.
Collapse
Affiliation(s)
- Sergio Bonesi
- Department of Chemistry, PhotoGreen Lab, University of Pavia, V. Le Taramelli 12, 27100, Pavia, Italy.,Departamento de Química Orgánica, CIHIDECAR-CONICET, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, 3er Piso, Pabellón 2, Ciudad Universitaria, Buenos Aires, 1428, Argentina
| | - Stefano Protti
- Department of Chemistry, PhotoGreen Lab, University of Pavia, V. Le Taramelli 12, 27100, Pavia, Italy
| | - Maurizio Fagnoni
- Department of Chemistry, PhotoGreen Lab, University of Pavia, V. Le Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|