1
|
Wang S, Niu X, Zhou H, Cao J, Guo C, Chang J, Zhu B. Acid-Regulated Selective Synthesis of Benzofuran Derivatives via Single-Component BDA Retro-Aldol/Michael Addition Cascade and [4 + 2] Cycloaddition Reactions. J Org Chem 2025. [PMID: 40393964 DOI: 10.1021/acs.joc.5c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The acid-controlled single-component retro-aldol/Michael addition cascade reaction and [4 + 2] cycloaddition of benzofuran-derived azadienes (BDAs) are reported for the first time. Under the conditions of trifluoromethanesulfonic acid as the catalyst and with the addition of water, BDAs initiate the retro-aldol reaction, followed by a 1,4-Michael addition, yielding (arylmethylene)bis(dibenzofuran) products with excellent yields and broad substrate applicability. This represents the first application of BDAs in a retro-aldol reaction. In contrast, in the absence of water and with boron trifluoride etherate as the catalyst, BDAs undergo a [4 + 2] cycloaddition reaction, constructing the spiro[benzofuran-2,3'-benzofuro[3,2-b]pyridine] framework with high yields and diastereoselectivity. The method features mild conditions and high atom economy, and provides a new approach for constructing benzofuran scaffold derivatives.
Collapse
Affiliation(s)
- Shuhong Wang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xinran Niu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Haojia Zhou
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Jiatong Cao
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Chenyang Guo
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Junbiao Chang
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bo Zhu
- Pingyuan Laboratory, Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
2
|
Das S, Maiti S, Mondal S, Mondal S, Midya SP, Ghosh P. Visible-Light-Induced Decarboxylative Annulation of α,β-Unsaturated Acids with Amines and α-Keto Acids for 2,4-Diarylquinoline Synthesis. Org Lett 2025. [PMID: 39898463 DOI: 10.1021/acs.orglett.5c00099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
An efficient and sustainable approach for the synthesis of 2,4-diarylquinolines has been developed via a visible-light-promoted metal-free three-component decarboxylative annulation pathway. This one-pot protocol combines readily available feed-stock α,β-unsaturated acids, aromatic amines, and α-keto acids in a cascade manner to access substituted quinolines under eco-benign conditions. Moreover, mechanistic insights suggest initial C-C cross coupling followed by decarboxylative 6π electrocyclic annulation to afford the desired products. The broad substrates scope and excellent functional group tolerance make this protocol more attractive and synthetically applicable toward the construction of complex N-heterocycles.
Collapse
Affiliation(s)
- Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Souvik Maiti
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Siba P Midya
- Department of Chemistry, Rammohan College, Kolkata, West Bengal 700009, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
3
|
Liu H, Jia M, Sun S, Xu X. Access to 2-thio/selenoquinolines via domino reaction of isocyanides with sulfur and selenium in water. Chem Commun (Camb) 2023; 59:14595-14598. [PMID: 37991823 DOI: 10.1039/d3cc04547a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
A domino reaction of o-alkenylaryl isocyanides with elemental sulfur and selenium in pure water was developed for the efficient and green synthesis of quinoline-2-thione and diquinolyl diselenide derivatives. Mechanistical investigation reveals that intramolecular nucleophilic addition of an alkenyl group to the in situ generated isothio/isoselenocyanate accounts for the formation of a quinoline-ring. Moreover, this transformation is also amendable for the convenient preparation of 2-fluoromethylthio-/seleno-quinolines by a one-pot three-component reaction.
Collapse
Affiliation(s)
- Haitao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Mengying Jia
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| | - Shaoguang Sun
- Medical College, Panzhihua University, Panzhihua, Sichuan 617000, China.
| | - Xianxiu Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Liu X, Chu X. Metal-Free Synthesis of Functionalized Quinolines from 2-Styrylanilines and 2-Methylbenzothiazoles/2-Methylquinolines. ACS OMEGA 2023; 8:6940-6944. [PMID: 36844512 PMCID: PMC9948197 DOI: 10.1021/acsomega.2c07736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
A facile functionalization of C(sp3)-H bonds and tandem cyclization strategy to synthesize quinoline derivatives from 2-methylbenzothiazoles or 2-methylquinolines and 2-styrylanilines has been developed. This work avoids the requirement for transition metals, offering a mild approach to activation of C(sp3)-H bonds and formation of new C-C and C-N bonds. This strategy features excellent functional group tolerance and scaled-up synthetic capability, thus providing an efficient and environmentally friendly access to medicinally valuable quinolines.
Collapse
|
5
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
6
|
Sherborne GJ, Kemmitt P, Prentice C, Zysman-Colman E, Smith AD, Fallan C. Visible Light-Mediated Cyclisation Reaction for the Synthesis of Highly-Substituted Tetrahydroquinolines and Quinolines. Angew Chem Int Ed Engl 2023; 62:e202207829. [PMID: 36342443 DOI: 10.1002/anie.202207829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Indexed: 11/09/2022]
Abstract
Condensation of 2-vinylanilines and conjugated aldehydes followed by an efficient light-mediated cyclisation selectively yields either substituted tetrahydroquinolines with typically high dr, or in the presence of an iridium photocatalyst the synthesis of quinoline derivatives is demonstrated. These atom economical processes require mild conditions, with the substrate scope demonstrating excellent site selectivity and functional group tolerance, including azaarene-bearing substrates. A thorough experimental mechanistic investigation explores multiple pathways and the key role that imine and iminium intermediates play in the absorption of visible light to generate reactive excited states. The synthetic utility of the reactions is demonstrated on gram scale quantities in both batch and flow, alongside further manipulation of the medicinally relevant products.
Collapse
Affiliation(s)
- Grant J Sherborne
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Paul Kemmitt
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| | - Callum Prentice
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK.,EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Andrew D Smith
- EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, UK
| | - Charlene Fallan
- Medicinal Chemistry Oncology R&D, Research and Early Development, AstraZeneca, Cambridge Science Park, Unit 310, Darwin Building, Cambridge, CB4 0WG, UK
| |
Collapse
|
7
|
Yu C, Xu Y, Zhang X, Fan X. Selective Synthesis of Pyrazolonyl Spirodihydroquinolines or Pyrazolonyl Spiroindolines under Aerobic or Anaerobic Conditions. Org Lett 2022; 24:9473-9478. [PMID: 36524816 DOI: 10.1021/acs.orglett.2c03952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Presented herein is a condition-controlled selective synthesis of pyrazolonyl spirodihydroquinolines or pyrazolonyl spiroindolines through formal [5 + 1] or [4 + 1] spiroannulation of 2-alkenylanilines with diazopyrazolones. Mechanistically, the formation of the title products involves initial generation of a pyrazolonyl spiro-fused seven-membered ruthenacycle species serving as a key intermediate through Ru(II)-catalyzed C-H/N-H bonds metalation, carbene formation, and its migratory insertion. When the reaction is carried out under air, the key intermediate undergoes reductive elimination to afford spirodihydroquinoline. When the reaction is run under argon, the key intermediate undergoes protonation and intramolecular nucleophilic addition to furnish spiroindoline. This work provides an atom-economical protocol for the effective functionalization of alkenyl C(sp2)-H bond, allowing rapid and selective assembly of valuable spiroscaffolds with a broad range of substrates.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
8
|
Yadav P, Bhalla A. Recent Advances in Green Synthesis of Functionalized Quinolines of Medicinal Impact (2018‐Present). ChemistrySelect 2022. [DOI: 10.1002/slct.202201721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Pooja Yadav
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry Panjab University Chandigarh 160014 India
| |
Collapse
|
9
|
Jiang R, Mu Y, Zhang W, Hong Y, Iqbal Z, Hou J, Yang Z, Tang D. Acid-promoted synthesis of pyrazolo[4,3-c]quinoline derivatives by employing pyrazole-arylamines and β-keto esters via cleavage of C–C bonds. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Rui Jiang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Yangxiu Mu
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Wei Zhang
- Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Yu Hong
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Zafar Iqbal
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Jing Hou
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Zhixiang Yang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| | - Dong Tang
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, P. R. China
| |
Collapse
|
10
|
Metal-Free Catalysis in C-C Single-Bond Cleavage: Achievements and Prospects. Top Curr Chem (Cham) 2022; 380:38. [PMID: 35951267 DOI: 10.1007/s41061-022-00393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 10/15/2022]
Abstract
This review article emphasizes the C-C bond cleavage in organic synthesis via metal-free approach. Conventional organic synthesis mainly deals with the reactive π bonds and polar σ bonds. In contrast, the ubiquitous C-C single bonds are inherently stable and are less reactive, which poses a challenge to synthetic chemists. Although inert, such C-C single-bond cleavage reactions have gained attention amongst synthetic chemists, as they provide unique and more straightforward routes, with significantly fewer steps. Several review articles have been reported regarding the activation and cleavage of C-C bonds using different transition metals. However, given the high cost and toxicity of many of these metals, the development of strategies under metal-free conditions is of utmost importance. Though many research articles have been published in this area, no review article has been reported so far. Herein, we discuss the reactions in a more concise way from the year 2012 to today, with emphasis on important reactions. Mechanisms of all the reactions are also well addressed. We believe that this review will be beneficial for the readers who work in this field.
Collapse
|
11
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
12
|
Yu C, Xu Y, Zhang X, Fan X. Synthesis of N-Arylindoles from 2-Alkenylanilines and Diazonaphthalen-2(1 H)-ones through Simultaneous Indole Construction and Aryl Introduction. J Org Chem 2022; 87:7392-7404. [PMID: 35594494 DOI: 10.1021/acs.joc.2c00628] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this paper, an efficient synthesis of N-arylindoles through the cascade reaction of 2-alkenylanilines with diazonaphthalen-2(1H)-ones is presented. Mechanistically, this reaction involves the generation of a Ru-carbene complex from diazonaphthalen-2(1H)-one, followed by carbene N-H bond insertion with 2-alkenylaniline, intramolecular cyclization, and oxidative aromatization. In this reaction, the Ru(II) complex acts as a multifunctional catalyst to promote not only the carbene formation but also the intramolecular cyclization and the dehydrogenative aromatization. Meanwhile, air acts as a green and cost-effective oxidant. To our knowledge, this is the first example in which N-arylindoles were synthesized through simultaneous introduction of the N-aryl unit and construction of the indole scaffold. Notable advantages of this method include readily accessible and halide-free substrates, additive-free reaction conditions, good efficiency, excellent atom economy, and compatibility with diverse functional groups. In addition, the utility of the product thus obtained was showcased by its diverse structural transformations.
Collapse
Affiliation(s)
- Caiyun Yu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yuanshuang Xu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xinying Zhang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Xuesen Fan
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
13
|
Liu L, Lin J, Pang M, Jin H, Yu X, Wang S. Photo-Thermo-Mechanochemical Approach to Synthesize Quinolines via Addition/Cyclization of Sulfoxonium Ylides with 2-Vinylanilines Catalyzed by Iron(II) Phthalocyanine. Org Lett 2022; 24:1146-1151. [PMID: 35112867 DOI: 10.1021/acs.orglett.1c04220] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A novel photo-thermo-mechanochemical approach to assembling quinolines catalyzed by iron(II) phthalocyanine has been realized for the first time. This transformation features a cost-efficient catalytic system and operational simplicity, is free of solvent, and shows good substrate tolerance, providing a green alternative to existing thermal approaches. Mechanistic experiments demonstrate that the in-situ-formed secondary amine may be the key intermediate for the further cyclization/aromatization process.
Collapse
Affiliation(s)
- Luyao Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Jingyang Lin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Mingxuan Pang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Huile Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaochun Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Shun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| |
Collapse
|
14
|
Yang T, Li H, Nie Z, Su MD, Luo WP, Liu Q, Guo CC. [3+1+1+1] Annulation to the Pyridine Structure in Quinoline Molecules Based on DMSO as a Nonadjacent Dual-Methine Synthon: Simple Synthesis of 3-Arylquinolines from Arylaldehydes, Arylamines, and DMSO. J Org Chem 2022; 87:2797-2808. [DOI: 10.1021/acs.joc.1c02708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tonglin Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Zhiwen Nie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Miao-dong Su
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Wei-ping Luo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Qiang Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| | - Can-Cheng Guo
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, China
| |
Collapse
|
15
|
Saito S, Katamura T, Tsukazaki R, Fujisawa A, Yoshigoe Y, Mutoh Y. The Aza-Prins Reaction of 1,2-Dicarbonyl Compounds with 3-Vinyltetrahydroquinolines: Application to the Synthesis of Polycyclic Spirooxindole Derivatives. J Org Chem 2021; 86:16425-16433. [PMID: 34792347 PMCID: PMC8650011 DOI: 10.1021/acs.joc.1c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Indexed: 11/28/2022]
Abstract
The aza-Prins reaction of 6,7-dimethoxy-3-vinyl-1,2,3,4-tetrahydroquinoline (1) with 1,2-dicarbonyl compounds proceeded smoothly in the presence of HCl, and the corresponding tricyclic benzazocines were isolated in yields of 20-86%. The reaction proceeded in a stereoselective manner, and the formation of the 2,4-trans isomer was observed. The reaction of 1 with an enantiopure ketoester gave the corresponding tricyclic benzazocine as a mixture of diastereomers. The diastereomers were easily separated and converted to enantiopure tricyclic benzazocines. The synthesis of spirooxindole derivatives was achieved by the reaction of 1 with isatin derivatives.
Collapse
Affiliation(s)
- Shinichi Saito
- Department of Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Tomohiro Katamura
- Department of Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Rei Tsukazaki
- Department of Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Akito Fujisawa
- Department of Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | - Yusuke Yoshigoe
- Department of Chemistry,
Faculty of Science, Tokyo University of
Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
| | | |
Collapse
|
16
|
Rhodium-Catalyzed C-H Annulation of Free Anilines with Vinylene Carbonate as a Bifunctional Synthon. Org Lett 2021; 23:8910-8915. [PMID: 34757750 DOI: 10.1021/acs.orglett.1c03404] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chemical transformation with vinylene carbonate as an emerging synthetic unit has recently attracted considerable attention. This report is a novel conversion pattern with vinylene carbonate, in which such a vibrant reagent unprecedentedly acts as a difunctional coupling partner to complete the C-H annulation of free anilines. From commercially available substrates, this protocol leads to the rapid construction of synthetically versatile 2-methylquinoline derivatives (43 examples) with excellent functionality tolerance.
Collapse
|
17
|
Hu Y, Nan J, Gong X, Zhang J, Yin J, Ma Y. Zinc-catalyzed C-H alkenylation of quinoline N-oxides with ynones: a new strategy towards quinoline-enol scaffolds. Chem Commun (Camb) 2021; 57:4930-4933. [PMID: 33870963 DOI: 10.1039/d1cc00245g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A zinc-catalyzed C-H alkenylation of quinoline N-oxides with ynones has been developed to rapidly assemble a broad collection of valuable quinoline-enol organic architectures. Uncommonly, this novel reaction involves C-H functionalization, and N-O, C-C and C[triple bond, length as m-dash]C bond cleavage in one operation, and leads exclusively to the formation of an enol rather than a keto product. Application of the enols generated was highlighted by further derivative transformation and preparation of a series of "BODIPY" analogues with high quantum yields (up to 86%).
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Gong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiacheng Yin
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
18
|
Nan J, Chen P, Gong X, Hu Y, Ma Q, Wang B, Ma Y. Metal-Free C-H [5 + 1] Carbonylation of 2-Alkenyl/Pyrrolylanilines Using Dioxazolones as Carbonylating Reagents. Org Lett 2021; 23:3761-3766. [PMID: 33856227 DOI: 10.1021/acs.orglett.1c01147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A novel metal-free C-H [5 + 1] carbonylative annulation of 2-alkenyl/pyrrolylanilines with dioxazolones has been established for the assembly of the privileged quinolinones and pyrrolyl-fused quinoxalinones. Entirely differing from the existing reports, the dioxazolones herein behave with an innovative chemistry and first emerge as carbonylating reagents to participate in annulation reactions. Moreover, this process features exceedingly simple operation (only solvent) and tolerates both vinyl and aryl substrates. Comprehensive mechanistic studies indicate that the formed isocyanate intermediate plays a crucial role in enabling the carbonylation annulation.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Pu Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xue Gong
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiong Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bo Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
19
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
20
|
Nan J, Zhang J, Hu Y, Wang C, Wang T, Wang W, Ma Y, Szostak M. Cu II-Catalyzed Coupling with Two Ynone Units by Selective Triple and Sigma C-C and C-H Bond Cleavages. Org Lett 2021; 23:1928-1933. [PMID: 33570962 DOI: 10.1021/acs.orglett.1c00371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a new copper-catalyzed [2 + 2 + 1] annulation process through the selective cleavage of sigma and triple C-C and C-H bonds using two ynone units. This new methodology involves breaking multiple chemical bonds in a single operation, including C≡C, C-C, C-H, and N-O. These high-value adducts lead to a diverse collection of synthetically challenging trisubstituted indolizines by the simultaneous engagement of different bond-breaking events and show excellent fluorescence in green aqueous solutions.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiawen Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yan Hu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tingting Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Weitao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Department of Chemistry, Rutgers University, Newark, New Jersey 07102, United States
| |
Collapse
|
21
|
Liu S, Zhang P, Zhang Y, Zhou X, Liang J, Nan J, Ma Y. Bifunctional acidic ionic liquid-catalyzed decarboxylative cascade synthesis of quinoxalines in water under ambient conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo01068a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An acid-functionalized ionic liquid (IL)-catalyzed cascade decarboxylative cyclization of 2-arylanilines with α-oxocarboxylic acids was developed.
Collapse
Affiliation(s)
- Shanshan Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Pingjun Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yuanyuan Zhang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Xianying Zhou
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiahui Liang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, P. R. China
| |
Collapse
|
22
|
Nan J, Ma Q, Yin J, Liang C, Tian L, Ma Y. RhIII-Catalyzed formal [5 + 1] cyclization of 2-pyrrolyl/indolylanilines using vinylene carbonate as a C1 synthon. Org Chem Front 2021. [DOI: 10.1039/d1qo00040c] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A rhodium(iii)-catalyzed formal C–H [5 + 1] cyclization of 2-pyrrolyl/indolylanilines with vinylene carbonate has been explored towards the potent assembly of diverse 4-methylpyrrolo[1,2-a]quinoxalines.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Qiong Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Jiacheng Yin
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Chengyuan Liang
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Lei Tian
- School of Food and Biological Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry
- College of Chemistry and Chemical Engineering
- Shaanxi University of Science and Technology
- Xi'an 710021
- China
| |
Collapse
|