1
|
Zhang CL, Liu C, Nie SR, Zhang Y, Guo JH, Li XL, Liu C. A Dual Functional Fluorescent Probe Based on Phenothiazine for Detecting Hg 2+ and ClO - and its Applications. J Fluoresc 2025; 35:397-410. [PMID: 38060150 DOI: 10.1007/s10895-023-03534-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
For the efficient detection of Hg2+ and ClO-, a double-analyte-responsive fluorescent probe PTB was successfully synthesized by combining N-butyl-3-formyl phenothiazine with hydrazine benzothiazole, and designing a specific reaction site for recognizing two analytes (Hg2+ and ClO-) in a compound. It was shown that probe PTB successfully formed a stable complex with Hg2+ in the coordination ratio of 2:1 by using the strong sulfur affinity of Hg2+, which resulted in a remarkable "turn-off" effect, with a quenching efficiency of 92.5% and four reversible cycles of Hg2+ fluorescence detection. For the fluorescence detection of Hg2+, the response time is fast (≤ 2 min) and the detection limit is low (7.8 nM), showing extremely high sensitivity, and the performance is obviously better than that of the reported fluorescent probes for detecting Hg2+. In particular, probe PTB has low toxicity and good biocompatibility, and has been successfully used for imaging of Hg2+ in living cells. Moreover, probe PTB uses thioether bond and carbon-nitrogen double bond as reaction sites to detect ClO-, which has large Stokes Shift (149 nm), good selectivity, high quenching efficiency (96.5%) and fast time response (about 10 s), and successfully detects ClO- in actual water samples.
Collapse
Affiliation(s)
- Cheng-Lu Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| | - Chang Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Shi-Ru Nie
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Jing-Hao Guo
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Xiang-Ling Li
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Cui Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Zhou H, Wang R, Sun M, Zhou Y, Zhang L, Song J, Sun Q, Zhang ST, Yang W, Xue S. Highly efficient pure organic near-ultraviolet (NUV) electro-fluorescent materials with high electron mobility and improved hole mobility. Chem Sci 2024:d4sc05625f. [PMID: 39449684 PMCID: PMC11495493 DOI: 10.1039/d4sc05625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
The lack of blue-emissive materials with high efficiency and excellent color purity commonly represents a pivotal obstacle in the development of organic light-emitting diodes (OLEDs). In this work, two blue to near-ultraviolet (NUV) donor-π-acceptor (D-π-A) emitters based on a fluorene π-bridge, 9-PCZCFTZ and 3-PCZCFTZ, are thus designed and synthesized, and non-doped devices derived from these two materials exhibit electroluminescence (EL) emission peaks at 404 nm and 417 nm, respectively. Interestingly, due to the specific stacking, a phenomenon appears in both materials in which the mobility of the electron is much higher than that of the hole, prompting us to use host doping to increase the hole mobilities, which ultimately leads to excellent OLED performances. As a result, the maximum external quantum efficiency (EQEmax) values of 9-PCZCFTZ and 3-PCZCFTZ in the doped devices reach as high as 14.5% and 10.8% respectively. Notably, both OLEDs show high blue purity very close to the BT.2020 standard.
Collapse
Affiliation(s)
- Huayi Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Runze Wang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Mizhen Sun
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Yannan Zhou
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Li Zhang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Jingru Song
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Qikun Sun
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Wenjun Yang
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Shanfeng Xue
- Key Laboratory of Rubber-Plastics of the Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
4
|
Öner S, Kuila S, Stavrou K, Danos A, Fox MA, Monkman AP, Bryce MR. Exciplex, Not Heavy-Atom Effect, Controls the Triplet Dynamics of a Series of Sulfur-Containing Thermally Activated Delayed Fluorescence Molecules. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:7135-7150. [PMID: 39156711 PMCID: PMC11325549 DOI: 10.1021/acs.chemmater.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024]
Abstract
The efficiency of thermally activated delayed fluorescence (TADF) in organic materials relies on rapid intersystem crossing rates and fast conversion of triplet (T) excitons into a singlet (S) state. Heavy atoms such as sulfur or selenium are now frequently incorporated into TADF molecular structures to enhance these properties by increased spin-orbit coupling [spin orbit coupling (SOC)] between the T and S states. Here a series of donor-acceptor (D-A) molecules based on 12H-benzo[4,5]thieno[2,3-a]carbazole and dicyanopyridine is compared with their nonsulfur control molecules designed to probe such SOC effects. We reveal that unexpected intermolecular interactions of the D-A molecules with carbazole-containing host materials instead serve as the dominant pathway for triplet decay kinetics in these materials. In-depth photophysical and computational studies combined with organic light emitting diode measurements demonstrate that the anticipated heavy-atom effect from sulfur is overshadowed by exciplex formation. Indeed, even the unsubstituted acceptor fragments exhibit pronounced TADF exciplex emission in appropriate carbazole hosts. The intermolecular charge transfer and TADF in these systems are further confirmed by detailed time-dependent density functional theory studies. This work demonstrates that anticipated heavy-atom effects in TADF emitters do not always control or even impact the photophysical and electroluminescence properties.
Collapse
Affiliation(s)
- Saliha Öner
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Suman Kuila
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Kleitos Stavrou
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew Danos
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Mark A. Fox
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Andrew P. Monkman
- Department
of Physics, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Stockton Road, Durham DH1 3LE, U.K.
| |
Collapse
|
8
|
Roy I, David AHG, Das PJ, Pe DJ, Stoddart JF. Fluorescent cyclophanes and their applications. Chem Soc Rev 2022; 51:5557-5605. [PMID: 35704949 DOI: 10.1039/d0cs00352b] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With the serendipitous discovery of crown ethers by Pedersen more than half a century ago and the subsequent introduction of host-guest chemistry and supramolecular chemistry by Cram and Lehn, respectively, followed by the design and synthesis of wholly synthetic cyclophanes-in particular, fluorescent cyclophanes, having rich structural characteristics and functions-have been the focus of considerable research activity during the past few decades. Cyclophanes with remarkable emissive properties have been investigated continuously over the years and employed in numerous applications across the field of science and technology. In this Review, we feature the recent developments in the chemistry of fluorescent cyclophanes, along with their design and synthesis. Their host-guest chemistry and applications related to their structure and properties are highlighted.
Collapse
Affiliation(s)
- Indranil Roy
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Arthur H G David
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - David J Pe
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA. .,School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia.,Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou, 311215, China
| |
Collapse
|