1
|
Uppuluru A, Annamalai P, Padala K. Recent advances in 4CzIPN-mediated functionalizations with acyl precursors: single and dual photocatalytic systems. Chem Commun (Camb) 2025; 61:3601-3635. [PMID: 39911039 DOI: 10.1039/d4cc06594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
4CzIPN (1,2,3,5-tetrakis(carbazole-9-yl)-4,6-dicyanobenzene) has emerged as a key metal-free photocatalyst for sustainable organic synthesis. Due to its unique design enabling high photoluminescence quantum yield, thermally activated delayed fluorescence (TADF) and long excited state lifetime, 4CzIPN facilitates diverse reactions, such as C-C and C-X bond formation reactions, under mild reaction conditions. This review highlights its application in decarboxylation, acylation and cyclisation reactions involving α-keto acids, carboxylic acids and aldehydes in a single catalytic system, as well as the combination of a dual catalytic system with transition metals to enhance selectivity and scope. 4CzIPN contributes to the advancement of sustainable chemistry by enabling green, efficient and scalable reactions and this review covers studies published between 2020 and 2024.
Collapse
Affiliation(s)
- Ajay Uppuluru
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Pratheepkumar Annamalai
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
2
|
Hou M, Wang Y, Yang H, Zhang J, Wu XF. Carbon Monoxide and Alkoxycarbonyl Radical Enabled Migration Strategy for the Carbonylative Functionalization of Unactivated Alkenes. Chemistry 2025; 31:e202404113. [PMID: 39628124 DOI: 10.1002/chem.202404113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Herein we report a "carbonylative migration" strategy for the acylation-esterification type double functionalization of unactivated alkenes using alkyloxalkyl chlorides and CO as the reagents. The transformation is proceeded by the alkoxycarbonyl radical addition to unactivated alkenes, followed by the insertion of carbon monoxide to induce intramolecular migration of heteroaryl groups, which is different from the traditional reaction modes. The reaction conditions were mild and well tolerated with varieties of functional groups. A variety of 1,4-dicarbonyl compounds with different ester groups were produced easily which has high potential applications in biology, medicine, and other fields.
Collapse
Affiliation(s)
- Ming Hou
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Yuanrui Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Hefei Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Jiajun Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., 18059, Rostock, Germany
| |
Collapse
|
3
|
Yan Y, Wang P, Li S, Dong J, Li G, Wang C, Xue D. Visible-Light-Triggered Mn 2(CO) 10-Catalyzed Carbonylation of (Hetero)aryl Chlorides. Org Lett 2025; 27:675-679. [PMID: 39772870 DOI: 10.1021/acs.orglett.4c04557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Carbonylation of aryl electrophiles is an important method for constructing aromatic carbonyl compounds for materials science and pharmaceutical applications. However, there have been few studies on the carbonylation of abundant, inexpensive aryl chlorides. Moreover, the existing carbonylation methods usually require a high temperature, control of the CO pressure, and structurally complex catalysts and ligands. We herein report a mild, operationally simple method for visible-light-triggered amino- and alkoxycarbonylation of inert (hetero)aryl chlorides with Mn2(CO)10 as both a catalyst and solid CO source at room temperature. This method, which does not require external metal catalyst, photosensitizer, or CO gas, is also suitable for other coupling partners, including aryl bromide and iodide, phenol, or arylamine derivatives.
Collapse
Affiliation(s)
- Yonggang Yan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Pengpeng Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Shasha Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jianyang Dong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Gang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dong Xue
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
4
|
Zhang X, Tang D, He L, Cao Y. Polyoxometalates Based Catalysts for Carbonylation Reactions: A Review. Chem Asian J 2024; 19:e202400464. [PMID: 38861115 DOI: 10.1002/asia.202400464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/31/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
As a type of diverse and structurally adjustable metal-oxo clusters, polyoxometalates (POMs) based materials have been extensively applied as a catalysis in various valuable reactions. This review summarized recent progress in the application of POMs-based catalysts for various carbonylation reactions including (1). Carbonylation of olefins, (2). Carbonylation of formaldehyde, (3). Carbonylation of methanol or dimethyl ether, (4). Oxidative carbonylation of methane, (5). Oxidative carbonylation of phenol and (6). Reductive carbonylation of nitrobenzene. A brief perspective on POMs-based catalysts for the carbonylation reactions is proposed.
Collapse
Affiliation(s)
- Xuehua Zhang
- Yancheng Teachers University, School of Chemical and Environmental Engineering, No. 2 Hope Avenue South Road, Yancheng, 224007, China
| | - Dechang Tang
- CNSG ANHUI HONG SIFANG CO., LTD, No. 1084 Jinzhai South Road, Hefei, 230000, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| | - Yanwei Cao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
5
|
Ogawa A, Yamamoto Y. Efficacy of radical reactions of isocyanides with heteroatom radicals in organic synthesis. Beilstein J Org Chem 2024; 20:2114-2128. [PMID: 39224232 PMCID: PMC11368054 DOI: 10.3762/bjoc.20.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Isocyanide is a promising synthetic reagent not only as a one-carbon homologation reagent but also as a nitrogen source for nitrogen-containing molecules. Because of their isoelectronic structure with carbon monoxide, isocyanides also react with nucleophiles, electrophiles, carbon radicals, and transition metal reagents, and are widely used in organic synthesis. On the other hand, the use of isocyanides in reactions with heteroatom radicals is limited. However, the reaction of isocyanides with heteroatom radicals is a promising synthetic tool for the construction of nitrogen-containing organic molecules modified with a variety of heteroatoms. In this Perspective, we review the addition and cyclization reactions of heteroatom radicals with isocyanides and discuss the synthetic prospects of the reaction of isocyanides with heteroatom radicals.
Collapse
Affiliation(s)
- Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| |
Collapse
|
6
|
Liu X, Portela BS, Wiedenbeck A, Chrisman CH, Paton RS, Miyake GM. Organocatalyzed Carbonylation of Alkyl Halides Driven by Visible Light. Angew Chem Int Ed Engl 2024:e202410928. [PMID: 39110753 DOI: 10.1002/anie.202410928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 11/01/2024]
Abstract
Herein, we describe a new strategy for the carbonylation of alkyl halides with different nucleophiles to generate valuable carbonyl derivatives under visible light irradiation. This method is mild, robust, highly selective, and proceeds under metal-free conditions to prepare a range of structurally diverse esters and amides in good to excellent yields. In addition, we highlight the application of this activation strategy for 13C isotopic incorporation. We propose that the reaction proceeds by a photoinduced reduction to afford carbon-centered radicals from alkyl halides, which undergo subsequent single electron-oxidation to form a carbocationic intermediate. Carbon monoxide is trapped by the carbocation to generate an acylium cation, which can be attacked by a series of nucleophiles to give a range of carbonyl products.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Brandon S Portela
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Analiese Wiedenbeck
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Cameron H Chrisman
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Center Ave, Fort Collins, CO 80523, United States
| |
Collapse
|
7
|
Mou Q, Han T, Liu M. Light-Driven Three-Component Carbonylation of Aryl Halides Using Abundant Metal Carbonyl. Org Lett 2024; 26:2169-2174. [PMID: 38477516 DOI: 10.1021/acs.orglett.4c00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Carbonyl compounds are widely found in various pharmaceutical intermediates and synthetic precursors. Herein we report a simple light-driven three-component aryl halide process for synthesizing a variety of carbonylation products, utilizing Co2(CO)8 as an abundant solid carbonyl source, in good to excellent yields. The products can easily be subjected to further functionalization in synthesis. Mechanism studies indicated that this reaction is enabled by aryl radical generation and the subsequent CO insertion, alkene insertion, and protonation process.
Collapse
Affiliation(s)
- Quansheng Mou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tongyu Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Mingxin Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Chuentragool P, Ngamnithiporn A, Hongboon P, Ruchirawat S. Visible Light-Induced One-Pot Carbonylation of Alkyl Halides with Aryl Formates. J Org Chem 2024; 89:4205-4209. [PMID: 38447064 PMCID: PMC11351429 DOI: 10.1021/acs.joc.3c02763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/14/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Described herein is the development of a visible-light-driven carbonylation of alkyl halides. The exploitation of visible light to activate Pd complexes and the use of formates to serve the dual role of a CO surrogate and a phenoxide source allow the preparation of esters in moderate to good yields. Its relatively mild reaction conditions and the ability to perform this transformation without direct handling of toxic CO gas provide a practical means to access esters from alkyl halides.
Collapse
Affiliation(s)
- Padon Chuentragool
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Aurapat Ngamnithiporn
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Prachnawadee Hongboon
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Laboratory
of Medicinal Chemistry, Chulabhorn Research
Institute, Bangkok 10210, Thailand
- Program
in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center
of Excellence on Environmental Health and Toxicology, Office of the
Permanent Secretary (OPS), Ministry of Higher
Education, Science, Research and Innovation (MHESI), Bangkok 10400, Thailand
| |
Collapse
|
9
|
Chen Y, Lu Z, He W, Zhu H, Lu W, Shi J, Sheng J, Xie W. Rhodium-catalyzed annulation of hydrazines with vinylene carbonate to synthesize unsubstituted 1-aminoindole derivatives. RSC Adv 2024; 14:4804-4809. [PMID: 38323018 PMCID: PMC10844929 DOI: 10.1039/d3ra07466h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024] Open
Abstract
Herein, we describe rhodium-catalysed C-H bond activation for [3 + 2] annulation using hydrazide and vinylene carbonate, providing an efficient method for synthesising unsubstituted 1-aminoindole compounds. Characterised by high yields, mild reaction conditions, and no need for external oxidants, this transformation demonstrates excellent regioselectivity and a wide tolerance for various functional groups.
Collapse
Affiliation(s)
- Yichun Chen
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Ziqi Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wenfen He
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Huanyi Zhu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Weilong Lu
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Junjun Shi
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Jie Sheng
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| | - Wucheng Xie
- School of Environment and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
10
|
Zheng Y, Teng BH, Zhang Y, Wu XF. Photo-Induced Carbonylation of Aryl Bromides for the Synthesis of Aryl Esters and Amides Under Transition Metal-Free Conditions. Chem Asian J 2023; 18:e202300766. [PMID: 37730903 DOI: 10.1002/asia.202300766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/22/2023]
Abstract
In this work, we developed a photo-induced carbonylation of aryl bromides under transition metal-free conditions. The reaction shows good activity with alcohol and amine nucleophiles. Various esters and amides were formed from aryl halides and alcohols and amines under mild conditions in moderate to good yields.
Collapse
Affiliation(s)
- Yan Zheng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese, Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Bing-Hong Teng
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese, Academy of Sciences, 116023, Dalian, Liaoning, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian, 116029, China
| | - Youcan Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese, Academy of Sciences, 116023, Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese, Academy of Sciences, 116023, Dalian, Liaoning, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059, Rostock, Germany
| |
Collapse
|
11
|
Liu Q, Ma Z, Zhang J, Li XQ. Rhodium-catalyzed C-H carboxymethylation of anilines with vinylene carbonate. Org Biomol Chem 2023; 21:8320-8328. [PMID: 37795745 DOI: 10.1039/d3ob00931a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
A rhodium-catalyzed synthesis of phenylacetate has been realized by direct C-H carboxymethylation of anilines bearing removable directing groups. The reaction occurred most efficiently in air, without any external base or oxidant. This methodology is expected to provide a facile and general access to various bioactive 2-amino aromatic acetic acid derivatives.
Collapse
Affiliation(s)
- Qiong Liu
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Zhaolong Ma
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Jing Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Xu-Qin Li
- School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| |
Collapse
|
12
|
Lu B, Zhang Z, Jiang M, Liang D, He ZW, Bao FS, Xiao WJ, Chen JR. Photoinduced Five-Component Radical Relay Aminocarbonylation of Alkenes. Angew Chem Int Ed Engl 2023; 62:e202309460. [PMID: 37615886 DOI: 10.1002/anie.202309460] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
Radical single carbonylation reactions with CO constitute a direct and robust strategy toward various carbonyl compounds from readily available chemicals, and have been extensively studied over the past decades. However, realizing highly selective catalytic systems for controlled radical double carbonylation reactions has remained a substantial challenge, particularly for the more advanced multicomponent variants, despite their great potential value. Herein, we report a visible-light-driven radical relay five-component radical double aminocarbonylation reaction of unactivated alkenes using CO under metal-free conditions. This protocol provides direct access to valuable γ-trifluoromethyl α-ketoamides with good yields and high chemoselectivity. Crucial was the identification of distinct dual roles of amine coupling partners, sequentially acting as electron donors for the formation of photoactive electron donor-acceptor (EDA) complexes with radical precursors and then as a CO acceptor via nitrogen radical cations to form carbamoyl radicals. Cross-coupling of carbamoyl radicals with the acyl radicals that are formed in an alkene-based relay process affords double aminocarbonylation products.
Collapse
Affiliation(s)
- Bin Lu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Dong Liang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zi-Wei He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Feng-Shuo Bao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
13
|
Zhang P, Newhouse TR. Palladium-Catalyzed Carbonylative Difunctionalization of Unactivated Alkenes Initiated by Unstabilized Enolates. Angew Chem Int Ed Engl 2023; 62:e202307455. [PMID: 37319375 PMCID: PMC11090370 DOI: 10.1002/anie.202307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/17/2023]
Abstract
This report describes the first example of palladium-catalyzed carbonylative difunctionalization of unactivated alkenes initiated by enolate nucleophiles. The approach involves initiation by an unstabilized enolate nucleophile under an atmospheric pressure of CO and termination with a carbon electrophile. This process is compatible with a diverse range of electrophiles, including aryl, heteroaryl, and vinyl iodides to yield synthetically useful 1,5-diketone products, which were demonstrated to be precursors for multi-substituted pyridines. A PdI -dimer complex with two bridging CO units was observed although its role in catalysis is not yet understood.
Collapse
Affiliation(s)
- Pengpeng Zhang
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| | - Timothy R. Newhouse
- Department of Chemistry, Yale University, 225 Prospect Street, PO Box 208107, New Haven, CT, 06511
| |
Collapse
|
14
|
Ghosh S, Pyne P, Ghosh A, Choudhury S, Hajra A. Visible-light-induced cascade reaction: a sustainable approach towards molecular complexity. Org Biomol Chem 2023; 21:1591-1628. [PMID: 36723242 DOI: 10.1039/d2ob02062a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Photoredox catalysis has demonstrated rapid evolution in the field of synthetic organic chemistry. On the other hand, the splendour of cascade reactions in providing complex molecular architectures renders them a cutting-edge research area. Therefore, the merging of photocatalysis with cascade synthesis brings out a synthetic paradigm with immense potential. The development of photocascade catalysis for a target molecule with a particular molecular skeleton and stereochemical framework presents certain challenges but provides a robust and environmentally benign synthetic alternative. This comprehensive review assembles all the accomplishments and highlights of visible-light-induced cascade reactions with literature coverage up to October 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Swagata Choudhury
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India.
| |
Collapse
|
15
|
Sims HS, Dai M. Palladium-Catalyzed Carbonylations: Application in Complex Natural Product Total Synthesis and Recent Developments. J Org Chem 2023; 88:4925-4941. [PMID: 36705327 PMCID: PMC10127288 DOI: 10.1021/acs.joc.2c02746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Carbon monoxide is a cheap and abundant C1 building block that can be readily incorporated into organic molecules to rapidly build structural complexity. In this Perspective, we outline several recent (since 2015) examples of palladium-catalyzed carbonylations in streamlining complex natural product total synthesis and highlight the strategic importance of these carbonylation reactions in the corresponding synthesis. The selected examples include spinosyn A, callyspongiolide, perseanol, schizozygane alkaloids, cephanolides, and bisdehydroneostemoninine and related stemona alkaloids. We also provide our perspective about the recent advancements and future developments of palladium-catalyzed carbonylations.
Collapse
Affiliation(s)
- Hunter S Sims
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States.,Department of Chemistry, Purdue University, West Lafayette, Indiana47907, United States
| | - Mingji Dai
- Department of Chemistry, Emory University, Atlanta, Georgia30322, United States
| |
Collapse
|
16
|
Ai HJ, Geng HQ, Gu XW, Wu XF. Manganese-Catalyzed Alkoxycarbonylation of Alkyl Chlorides. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Han-Jun Ai
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Hui-Qing Geng
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xing-Wei Gu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, Liaoning China
| |
Collapse
|
17
|
Tian Q, Yin X, Sun R, Wu X, Li Y. The lower the better: Efficient carbonylative reactions under atmospheric pressure of carbon monoxide. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
18
|
Veatch AM, Liu S, Alexanian EJ. Cobalt-Catalyzed Deaminative Amino- and Alkoxycarbonylation of Aryl Trialkylammonium Salts Promoted by Visible Light. Angew Chem Int Ed Engl 2022; 61:e202210772. [PMID: 36256542 PMCID: PMC9729412 DOI: 10.1002/anie.202210772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/07/2022]
Abstract
Catalytic carbonylations of aryl electrophiles via C(sp2 )-N cleavage remains a significant challenge. Herein, we demonstrate an aminocarbonylation of aniline-derived trialkylammonium salts promoted by visible light with a simple cobalt catalyst. The reaction proceeds under mild conditions suitable for late-stage functionalization and is amenable to telescoped carbonylations directly from anilines. A range of alkylamines are successful partners, and alkoxycarbonylation is also demonstrated. Mechanistic studies and DFT calculations support a novel mechanism for catalytic carbonylations of aryl electrophiles involving a key visible light-induced carbonyl photodissociation.
Collapse
Affiliation(s)
- Alexander M Veatch
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shubin Liu
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Research Computing Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Erik J Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
19
|
Zhu J, Xu T, Lu P, Chen W, Lu W. Visible-light-driven carbonylation reaction over palladium supported on spherical-like graphitic carbon nitride. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
20
|
Rubab L, Anum A, Al-Hussain SA, Irfan A, Ahmad S, Ullah S, Al-Mutairi AA, Zaki MEA. Green Chemistry in Organic Synthesis: Recent Update on Green Catalytic Approaches in Synthesis of 1,2,4-Thiadiazoles. Catalysts 2022; 12:1329. [DOI: 10.3390/catal12111329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Green (sustainable) chemistry provides a framework for chemists, pharmacists, medicinal chemists and chemical engineers to design processes, protocols and synthetic methodologies to make their contribution to the broad spectrum of global sustainability. Green synthetic conditions, especially catalysis, are the pillar of green chemistry. Green chemistry principles help synthetic chemists overcome the problems of conventional synthesis, such as slow reaction rates, unhealthy solvents and catalysts and the long duration of reaction completion time, and envision solutions by developing environmentally benign catalysts, green solvents, use of microwave and ultrasonic radiations, solvent-free, grinding and chemo-mechanical approaches. 1,2,4-thiadiazole is a privileged structural motif that belongs to the class of nitrogen–sulfur-containing heterocycles with diverse medicinal and pharmaceutical applications. This comprehensive review systemizes types of green solvents, green catalysts, ideal green organic synthesis characteristics and the green synthetic approaches, such as microwave irradiation, ultrasound, ionic liquids, solvent-free, metal-free conditions, green solvents and heterogeneous catalysis to construct different 1,2,4-thiadiazoles scaffolds.
Collapse
Affiliation(s)
- Laila Rubab
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Ayesha Anum
- Hamdard Institute of Pharmaceutical Sciences, Islamabad Campus, Hamdard University of Pharmaceutical Sciences, Islamabad 44000, Pakistan
| | - Sami A. Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Sami Ullah
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Aamal A. Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Magdi E. A. Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
21
|
Lu B, Xu M, Qi X, Jiang M, Xiao WJ, Chen JR. Switchable Radical Carbonylation by Philicity Regulation. J Am Chem Soc 2022; 144:14923-14935. [PMID: 35939790 DOI: 10.1021/jacs.2c06677] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Carbonylation reactions involving CO as readily available C1 synthons have become one of the most important tools for the construction of carbonyl compounds from feedstock chemicals. Despite numerous catalytic methods for carbonylation reactions proceeding via ionic or radical pathways, an inherent limitation to these methods is the need to control switchable single and double carbonylative formation of value-added products from the same and simple starting materials. Here, we describe a new strategy that exploits photoredox catalysis to regulate the philicity of amine coupling partners to drive switchable radical carbonylation reactions. In double carbonylation, amines were first transformed into nitrogen radical cations by single-electron transfer-oxidation and coupled with CO to form carbamoyl radicals, which further underwent radical cross-coupling with the incipient cyanoalkyl acyl radicals to afford the double carbonylation products. Upon the addition of stoichiometric 4-dimethylaminopyridine (DMAP), DMAP competitively traps the initially formed cyanoalkyl acyl radical to form the relatively stabilized cyanoalkyl acyl-DMAP salts that engaged in the subsequent substitution with the nucleophilic amines to produce the single carbonylation products. The reaction proceeded smoothly with excellent selectivity in the presence of various amine nucleophiles at room temperature, generating valuable amides and α-ketoamides in a versatile and controlled fashion. Combined experimental and computational studies provided mechanistic insights into the possible pathways.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Minghao Xu
- Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiaotian Qi
- Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jia-Rong Chen
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
22
|
Nie Z, Yang T, Su M, Luo WP, Liu Q, Guo CC. One‐Step Synthesis of Arylacetaldehydes from Aryl aldehydes or Diaryl ketones via One‐Carbon Extension by Using the System of DMSO/KOH/Zinc. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Kawamoto T, Fukuyama T, Picard B, Ryu I. New directions in radical carbonylation chemistry: combination with electron catalysis, photocatalysis and ring-opening. Chem Commun (Camb) 2022; 58:7608-7617. [PMID: 35758516 DOI: 10.1039/d2cc02700c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radical carbonylation offers potent methods for introducing carbon monoxide into organic molecules. This feature article focuses on our current efforts to develop new strategies for radical carbonylation, which include electron-transfer carbonylation, site-selective C(sp3)-H carbonylation by a photocatalyst and ring-opening carbonylation.
Collapse
Affiliation(s)
- Takuji Kawamoto
- Department of Applied Chemistry, Yamaguchi University, Ube, Yamaguchi, 755-8611, Japan
| | - Takahide Fukuyama
- Department of Chemistry, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan
| | - Baptiste Picard
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan.
| | - Ilhyong Ryu
- Organization for Research Promotion, Osaka Metropolitan University (OMU), Sakai, Osaka, 599-8531, Japan. .,Department of Applied Chemistry, National Yang Ming Chiao Tung University (NYCU), Hsinchu, 30010, Taiwan
| |
Collapse
|
24
|
Singh J, Patel RI, Sharma A. Visible‐Light‐Mediated C‐2 Functionalization and Deoxygenative Strategies in Heterocyclic
N
‐Oxides. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Roshan I. Patel
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
25
|
Patel RI, Singh J, Sharma A. Visible Light‐Mediated Manipulation of 1,n‐Enynes in Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Roshan I. Patel
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Jitender Singh
- IIT Roorkee: Indian Institute of Technology Roorkee CHEMISTRY INDIA
| | - Anuj Sharma
- Indian Institute of Technoology Roorkee Deptartment of Chemistry Room 303DDepartment of Chemistry, IIT Roorkee 247667 Roorkee INDIA
| |
Collapse
|
26
|
Ghosh D, Ghosh S, Ghosh A, Pyne P, Majumder S, Hajra A. Visible light-induced functionalization of indazole and pyrazole: a recent update. Chem Commun (Camb) 2022; 58:4435-4455. [PMID: 35294515 DOI: 10.1039/d2cc00002d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indazole and pyrazole are renowned as a prodigious class of heterocycles having versatile uses in medicinal as well as industrial chemistry. Considering sustainable approaches, recently, photocatalysis has become an indispensable tool in organic chemistry due to its application for the activation of small molecules and the use of a clean energy source. In this review, we have highlighted the use of metal-based photocatalysts, organic photoredox catalysts, energy transfer photocatalysts and electron-donor-acceptor complexes in the functionalization of indazole and pyrazole. This perspective is arranged based on the types of functionalization reactions on indazole and pyrazole. A detailed discussion regarding the reaction mechanism of each reaction is given to provide a comprehensive guide to the reader. Finally, a summary of existing challenges and the future outlook towards the development of efficient photocatalytic methods for functionalization of these heterocycles is also presented.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore 560027, Karnataka, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
27
|
Sreenivasulu C, Satyanarayana G. A Metal-Free Path to 2-Iodo-3-alkyl-1-arylbut-2-en-1-ones and Their Application to the Domino Synthesis of Functionalized 2 H-Pyran-2-ones. J Org Chem 2022; 87:2222-2240. [PMID: 35172573 DOI: 10.1021/acs.joc.1c03061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a metal-free selective synthesis of 2-iodo-3-alkyl-1-arylbut-2-en-1-ones from propargylic alcohols that is enabled by N-iodosuccinimide. A variety of substituted propargylic alcohols are amenable to delivering the selective 2-iodoenone products in very good yields. The utility of the α-iodoenone derivatives is further extended by developing an efficient, novel, and new synthetic methodology for the synthesis of 3,5,6-trisubstituted 2H-pyran-2-ones. To the best of our knowledge, this protocol is the first of its kind to accomplish 3,5,6-trisubstituted 2H-pyran-2-ones through an unprecedented domino (formation of two C-C bonds and one C-O bond) one-pot process via intermolecular Heck coupling, base-driven Michael addition, and base-mediated double bond isomerization followed by cyclo-condensation. This protocol showed good compatibility with a wide range of iodoenones (18 examples) and 2H-pyran-2-ones (42 examples). Mechanistic studies indicate that palladium is only involved in the Heck coupling; the base solely drives the rest of the steps.
Collapse
Affiliation(s)
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi 502 285, Telangana, India
| |
Collapse
|
28
|
Wang Z, Zeng L, He C, Duan C. Metal-Organic Framework-Encapsulated Anthraquinone for Efficient Photocatalytic Hydrogen Atom Transfer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7980-7989. [PMID: 35119261 DOI: 10.1021/acsami.1c22872] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Anthraquinone (AQ) as an effective hydrogen atom transfer catalyst was limited in photocatalysis application due to the dimerization of reduced AQ. Sr-NDI@AQ, encapsulating AQ into the channel of Sr-NDI, paved a new way for solving the problem of dimerization of reduced AQ and improving the catalytic efficiency owing to the fast electron transfer from reduced AQ to the ligand through host-guest interaction. The structure of Sr-NDI@AQ was determined by single-crystal X-ray diffraction, and the value for distance and torsion angle between the ligand and AQ was calculated. The photochemical and electrochemical properties for Sr-NDI@AQ were characterized through a series of experiments. The coupling reaction between aldehyde and phenyl vinyl sulfone and photoacetalization reaction were carried out, displaying the improving catalytic efficiency of Sr-NDI@AQ compared to Sr-NDI and AQ. The reaction mechanisms were proposed through radical capture and electron paramagnetic resonance experiments.
Collapse
Affiliation(s)
- Zhonghe Wang
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Le Zeng
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
29
|
Lu B, Xiao WJ, Chen JR. Recent Advances in Visible-Light-Mediated Amide Synthesis. Molecules 2022; 27:517. [PMID: 35056829 PMCID: PMC8781888 DOI: 10.3390/molecules27020517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/10/2022] Open
Abstract
Visible-light photoredox catalysis has attracted tremendous interest within the synthetic community. As such, the activation mode potentially provides a more sustainable and efficient platform for the activation of organic molecules, enabling the invention of many controlled radical-involved reactions under mild conditions. In this context, amide synthesis via the strategy of photoredox catalysis has received growing interest due to the ubiquitous presence of this structural motif in numerous natural products, pharmaceuticals and functionalized materials. Employing this strategy, a wide variety of amides can be prepared effectively from halides, arenes and even alkanes under irradiation of visible light. These methods provide a robust alternative to well-established strategies for amide synthesis that involve condensation between a carboxylic acid and amine mediated by a stoichiometric activating agent. In this review, the representative progresses made on the synthesis of amides through visible light-mediated radical reactions are summarized.
Collapse
Affiliation(s)
- Bin Lu
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Wen-Jing Xiao
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
| | - Jia-Rong Chen
- Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China; (B.L.); (W.-J.X.)
- School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang 453007, China
| |
Collapse
|
30
|
Patel B, Dahiya A, Das B, SAHOO ASHISHKUMAR. Visible‐Light‐Driven Isocyanide Insertion to o‐Alkenylanilines: A Route to Isoindolinone Synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Bubul Das
- Indian Institute of Technology Guwahati INDIA
| | | |
Collapse
|
31
|
SINGH JITENDER, Sharma A. Green and Sustainable Visible Light-Mediated Formation of Amide Bonds: An Emerging Niche in Organic Chemistry. NEW J CHEM 2022. [DOI: 10.1039/d2nj02406c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amide bond is one of the most fascinating functional groups in nature due to its stability, conformational diversity, high bond polarity, and abundance in numerous natural products and drug candidates,...
Collapse
|
32
|
Chen L, Hou J, Zheng M, Zhan LW, Tang WY, Li BD. Carbonylative coupling of simple alkanes and alkenes enabled by organic photoredox catalysis. Chem Commun (Camb) 2021; 57:10210-10213. [PMID: 34523655 DOI: 10.1039/d1cc04138j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible-light-driven direct carbonylative coupling of simple alkanes and alkenes via the combination of a hydrogen atom transfer process and photoredox catalysis has been demonstrated. Employing the N-alkoxyazinium salt as the oxidant and the precursor of an oxygen radical, a variety of α,β-unsaturated ketones could be obtained in a metal-free fashion.
Collapse
Affiliation(s)
- Ling Chen
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Ming Zheng
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Wan-Ying Tang
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
33
|
Capaldo L, Ravelli D, Fagnoni M. Direct Photocatalyzed Hydrogen Atom Transfer (HAT) for Aliphatic C-H Bonds Elaboration. Chem Rev 2021; 122:1875-1924. [PMID: 34355884 PMCID: PMC8796199 DOI: 10.1021/acs.chemrev.1c00263] [Citation(s) in RCA: 443] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Direct photocatalyzed
hydrogen atom transfer (d-HAT) can be considered
a method of choice for the elaboration of
aliphatic C–H bonds. In this manifold, a photocatalyst (PCHAT) exploits the energy of a photon to trigger the homolytic
cleavage of such bonds in organic compounds. Selective C–H
bond elaboration may be achieved by a judicious choice of the hydrogen
abstractor (key parameters are the electronic character and the molecular
structure), as well as reaction additives. Different are the classes
of PCsHAT available, including aromatic ketones, xanthene
dyes (Eosin Y), polyoxometalates, uranyl salts, a metal-oxo porphyrin
and a tris(amino)cyclopropenium radical dication. The processes (mainly
C–C bond formation) are in most cases carried out under mild
conditions with the help of visible light. The aim of this review
is to offer a comprehensive survey of the synthetic applications of
photocatalyzed d-HAT.
Collapse
Affiliation(s)
- Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
34
|
Advances in Visible-Light-Mediated Carbonylative Reactions via Carbon Monoxide (CO) Incorporation. Catalysts 2021. [DOI: 10.3390/catal11080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The abundant and inexpensive carbon monoxide (CO) is widely exploited as a C1 source for the synthesis of both fine and bulk chemicals. In this context, photochemical carbonylation reactions have emerged as a powerful tool for the sustainable synthesis of carbonyl-containing compounds (esters, amides, ketones, etc.). This review aims at giving a general overview on visible light-promoted carbonylation reactions in the presence of metal (Palladium, Iridium, Cobalt, Ruthenium, Copper) and organocatalysts as well, highlighting the main features of the presented protocols and providing useful insights on the reaction mechanisms.
Collapse
|
35
|
Kato M, Ghosh K, Nishii Y, Miura M. Rhodium-catalysed direct formylmethylation using vinylene carbonate and sequential dehydrogenative esterification. Chem Commun (Camb) 2021; 57:8280-8283. [PMID: 34319322 DOI: 10.1039/d1cc03362j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A rhodium-catalysed direct formylmethylation adopting vinylene carbonate as an ethynol equivalent is reported. The developed catalytic system is further utilised for the oxidant-free production of esters with the liberation of hydrogen gas. Some control experiments are conducted to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Moena Kato
- Department of Applied Chemistry, Graduate School of Engineering, Suita, Osaka 565-0871, Japan.
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
37
|
Abstract
Despite recent advancements in the selective generation and coupling of organic radical species, the alkoxycarbonyl radical remains underexplored relative to other carbon-containing radical species. Drawing inspiration from new strategies for generating acyl radical equivalents utilizing dual N-heterocyclic carbene catalysis and photocatalysis, we have prepared dimethylimidazolium esters that can function as an alkoxycarbonyl radical surrogate under photocatalytic conditions. We demonstrate the synthetic utility of these azolium-based partners through the preparation of esters arising from the coupling of this radical surrogate with an oxidatively generated alkyl radical.
Collapse
Affiliation(s)
- Joshua L Zhu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| | - Karl A Scheidt
- Department of Chemistry, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
38
|
Qi Z, Li L, Liang YK, Ma AJ, Zhang XZ, Peng JB. Visible-Light-Induced Carbonylation of Indoles with Phenols under Metal-Free Conditions: Synthesis of Indole-3-carboxylates. Org Lett 2021; 23:4769-4773. [PMID: 34060850 DOI: 10.1021/acs.orglett.1c01494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-induced carbonylation of indoles with phenols for the synthesis of indole-3-carboxylates has been developed. The reaction proceeded via a radical carbonylation process in which elementary I2 was used as an effective photosensitive initiator and, thus, avoided the use of transition metal catalysts. A series of different aryl indole-3-carboxylates were prepared in moderate to good yields. The broad applicability of this methodology was further highlighted by the late-stage functionalization of several phenol-containing natural products and pharmaceuticals.
Collapse
Affiliation(s)
- Zhuang Qi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Lin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ying-Kang Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Xiang-Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, People's Republic of China
| |
Collapse
|
39
|
Chand S, Pandey AK, Singh R, Singh KN. Visible-Light-Induced Photocatalytic Oxidative Decarboxylation of Cinnamic Acids to 1,2-Diketones. J Org Chem 2021; 86:6486-6493. [PMID: 33851837 DOI: 10.1021/acs.joc.1c00322] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A concerted metallophotoredox catalysis has been realized for the efficient decarboxylative functionalization of α,β-unsaturated carboxylic acids with aryl iodides in the presence of perylene bisimide dye to afford 1,2-diketones.
Collapse
Affiliation(s)
- Shiv Chand
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Anand Kumar Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Rahul Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
40
|
Affiliation(s)
- Jitender Singh
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| | - Anuj Sharma
- Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247667 India
| |
Collapse
|
41
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
42
|
Abstract
This review summarizes the visible light mediated strategies for the functionalization of allenes.
Collapse
Affiliation(s)
- Jitender Singh
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anoop Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India
| |
Collapse
|
43
|
Patel RI, Sharma A, Sharma S, Sharma A. Visible light-mediated applications of methylene blue in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d0qo01182g] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review presents the manipulation of methylene blue in visible-light-assisted organic synthesis.
Collapse
Affiliation(s)
| | - Anoop Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|