1
|
Gesmundo NJ, Rago AJ, Young JM, Keess S, Wang Y. At the Speed of Light: The Systematic Implementation of Photoredox Cross-Coupling Reactions for Medicinal Chemistry Research. J Org Chem 2024; 89:16070-16092. [PMID: 38442262 DOI: 10.1021/acs.joc.3c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The adoption of new and emerging techniques in organic synthesis is essential to promote innovation in drug discovery. In this Perspective, we detail the strategy we used for the systematic deployment of photoredox-mediated, metal-catalyzed cross-coupling reactions in AbbVie's medicinal chemistry organization, focusing on topics such as assessment, evaluation, implementation, and accessibility. The comprehensive evaluation of photoredox reaction setups and published methods will be discussed, along with internal efforts to build expertise and photoredox high-throughput experimentation capabilities. We also highlight AbbVie's academic-industry collaborations in this field that have been leveraged to develop new synthetic strategies, along with discussing the internal adoption of photoredox cross-coupling reactions. The work described herein has culminated in robust photocatalysis and cross-coupling capabilities which are viewed as key platforms for medicinal chemistry research at AbbVie.
Collapse
Affiliation(s)
- Nathan J Gesmundo
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alexander J Rago
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Jonathon M Young
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Sebastian Keess
- Global Medicinal Chemistry, Small Molecule Therapeutics & Platform Technologies, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Ying Wang
- Advanced Chemistry Technologies Group, Small Molecule Therapeutics & Platform Technologies, AbbVie, Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
2
|
Qiu X, Cai Q, Pohl E, Jung A, Su H, Fuhr O, Schepers U, Bräse S. A simple method to modulate the selectivity of aryl azide photolysis using cucurbit[8]uril. Chem Commun (Camb) 2024; 60:12852-12855. [PMID: 39412510 DOI: 10.1039/d4cc04209c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Photolysis of aryl azides typically involves multiple reaction pathways. This study designed and synthesized an aryl azide rotamer with two conformations. In aqueous media, its photolysis yields two main products. However, when stabilized in one conformation within the cucurbit[8]uril (CB8) host, the photoreaction selectively produces a single product.
Collapse
Affiliation(s)
- Xujun Qiu
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Qianyu Cai
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Eric Pohl
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - André Jung
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Haopu Su
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
| | - Olaf Fuhr
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Ute Schepers
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany.
- Institute of Biological and Chemical Systems - Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Slavík P, Trowse BR, O'Brien P, Smith DK. Organogel delivery vehicles for the stabilization of organolithium reagents. Nat Chem 2023; 15:319-325. [PMID: 36797326 PMCID: PMC9986108 DOI: 10.1038/s41557-023-01136-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023]
Abstract
Organolithium reagents are a vital tool in modern organic chemistry, enabling the synthesis of carbon-carbon bonds. However, due to their high reactivity, low temperatures, inert atmospheres and strictly dried solvents are usually necessary for their use. Here we report an encapsulating method for the stabilization of sensitive organolithium reagents-PhLi, n-BuLi and s-BuLi-in a low-cost hexatriacontane (C36H74) organogel. The use of this technology is showcased in nucleophilic addition reactions under ambient conditions, low-temperature bromine-lithium exchange, ortho-lithiation and C-H functionalization. The gel substantially enhances organolithium stability, allows simple storage, handling and delivery, and enables reproducible reagent portioning. The use of gels as easily divided delivery vehicles for hazardous organometallics has the potential to transform this area of synthetic chemistry, making these powerful reactions safer and more accessible to non-specialist researchers, and enabling the more widespread use of these common synthetic methods.
Collapse
Affiliation(s)
- Petr Slavík
- Department of Chemistry, University of York, York, UK
| | | | - Peter O'Brien
- Department of Chemistry, University of York, York, UK.
| | - David K Smith
- Department of Chemistry, University of York, York, UK.
| |
Collapse
|
4
|
Abstract
Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056Basel, Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
5
|
Thavornpradit S, Malinski TJ, Bergbreiter DE. Applications of poly(α-olefin)s as solvents in organometallic chemistry. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Harper KC, Zhang EX, Liu ZQ, Grieme T, Towne TB, Mack DJ, Griffin J, Zheng SY, Zhang NN, Gangula S, Yuan JL, Miller R, Huang PZ, Gage J, Diwan M, Ku YY. Commercial-Scale Visible Light Trifluoromethylation of 2-Chlorothiophenol Using CF3I Gas. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kaid C. Harper
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - En-Xuan Zhang
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Zhi-Qing Liu
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Timothy Grieme
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Timothy B. Towne
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Daniel J. Mack
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Jeremy Griffin
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Song-Yuan Zheng
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Ning-Ning Zhang
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Srinivas Gangula
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Jia-Long Yuan
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Robert Miller
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Ping-Zhong Huang
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - James Gage
- Asymchem Laboratories (Tianjin) Company Limited, TEDA, Tianjin 300457, P. R. China
| | - Moiz Diwan
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| | - Yi-Yin Ku
- Abbvie Process Research & Development, 1401 N. Sheridan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
7
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Borlinghaus N, Schönfeld B, Heitz S, Klee J, Vukelić S, Braje WM, Jolit A. Enabling Metallophotoredox Catalysis in Parallel Solution-Phase Synthesis Using Disintegrating Reagent Tablets. J Org Chem 2021; 86:16535-16547. [PMID: 34787429 DOI: 10.1021/acs.joc.1c01867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Compressed tablets containing a mixture of a photocatalyst, a nickel catalyst, an inorganic base, and an inert excipient are employed as a fast, safe, and user-friendly chemical delivery system for two different metallophotoredox-catalyzed reactions. This delivery method simplifies the preparation of compound libraries using photoredox chemistry in a parallel setting. The reagent tablets were successfully applied to late-stage functionalization of drug-like intermediates. These tablets can be prepared with various reagents and catalysts in different sizes and be stored on the bench thanks to blister packaging.
Collapse
Affiliation(s)
- Niginia Borlinghaus
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Barbara Schönfeld
- NCE Formulation Sciences, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Stephanie Heitz
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Johanna Klee
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Stella Vukelić
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Wilfried M Braje
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen 67061, Germany
| |
Collapse
|
9
|
Hauk P, Wencel-Delord J, Ackermann L, Walde P, Gallou F. Organic synthesis in Aqueous Multiphase Systems — Challenges and opportunities ahead of us. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Candish L, Collins KD, Cook GC, Douglas JJ, Gómez-Suárez A, Jolit A, Keess S. Photocatalysis in the Life Science Industry. Chem Rev 2021; 122:2907-2980. [PMID: 34558888 DOI: 10.1021/acs.chemrev.1c00416] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In the pursuit of new pharmaceuticals and agrochemicals, chemists in the life science industry require access to mild and robust synthetic methodologies to systematically modify chemical structures, explore novel chemical space, and enable efficient synthesis. In this context, photocatalysis has emerged as a powerful technology for the synthesis of complex and often highly functionalized molecules. This Review aims to summarize the published contributions to the field from the life science industry, including research from industrial-academic partnerships. An overview of the synthetic methodologies developed and strategic applications in chemical synthesis, including peptide functionalization, isotope labeling, and both DNA-encoded and traditional library synthesis, is provided, along with a summary of the state-of-the-art in photoreactor technology and the effective upscaling of photocatalytic reactions.
Collapse
Affiliation(s)
- Lisa Candish
- Drug Discovery Sciences, Pharmaceuticals, Bayer AG, 42113 Wuppertal, Germany
| | - Karl D Collins
- Bayer Foundation, Public Affairs, Science and Sustainability, Bayer AG, 51368 Leverkusen, Germany
| | - Gemma C Cook
- Discovery High-Throughput Chemistry, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, U.K
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, 42119 Wuppertal, Germany
| | - Anais Jolit
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, 67061 Ludwigshafen, Germany
| |
Collapse
|
11
|
Taillemaud S, Rosset S, Mazet C. Teflon
Magnetic Stirring Capsules (TMSC) as a Practical and Reusable Delivery System for Sensitive Reagents and Catalysts. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sylvain Taillemaud
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| | - Stéphane Rosset
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| | - Clément Mazet
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 CH-1211 Geneva Switzerland
| |
Collapse
|