1
|
Raji Reddy C, Neeliveettil A, Ajaykumar U, Punna N, Neuville L, Masson G. Thiolative Annulation of N-Benzyl- N-cyanopropiolamides Leading to Divergent Synthesis of Pyrroloquinazolin-1-ones and Maleimides. Org Lett 2025; 27:5032-5037. [PMID: 40338054 DOI: 10.1021/acs.orglett.5c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
An unprecedented successive radical-promoted thiolative annulation/Pd-catalyzed C-H amination of N-benzyl-N-cyanopropiolamides to access pyrrolo[2,1-b]quinazolin-1(9H)-ones in a one-pot manner is described. Moreover, altering the amination step with oxidation (reagent switch) offered maleimides from the same set of readily accessible precursors. Both transformations display versatility across a wide range of substrates, enabling the efficient access to various functionalized quinazolin-1-ones and maleimides in good yields.
Collapse
Affiliation(s)
- Chada Raji Reddy
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Anootha Neeliveettil
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Uprety Ajaykumar
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Nagender Punna
- CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
2
|
Fernandes RA, Ranjan RS, Choudhary P. K 2S 2O 8-Mediated or Azobisisobutyronitrile-Catalyzed Regioselective Aerobic Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2024; 26:6247-6252. [PMID: 39018343 DOI: 10.1021/acs.orglett.4c02241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024]
Abstract
This work reveals the regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by K2S2O8 or catalyzed by azobisisobutyronitrile, a very common free radical initiator, in an easy to handle, simple procedure and free of transition metals. This approach demonstrates excellent regioselectivity, mild reaction conditions, and compatibility with a broad range of functional groups (45 examples).
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ravikant S Ranjan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
3
|
Nayek P, Mal P. Mimicking Ozonolysis via Mechanochemistry: Internal Alkynes to 1,2-Diketones using H 5IO 6. Chemistry 2024; 30:e202401027. [PMID: 38634437 DOI: 10.1002/chem.202401027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
Utilizing periodic acid as an environmentally benign oxidizing agent, this study introduces a novel mechanochemical method that mimics ozonolysis to convert internal alkynes into 1,2-diketones, showcasing effective emulation of ozone's reactivity. Notably, this oxidation occurs at room temperature in aerobic conditions, eliminating the need for toxic transition metals, hazardous oxidants, or expensive solvents. Through control experiments validating the mechanism, substantial evidence supports a concerted reaction pathway. This progress marks a significant stride toward cleaner and more efficient chemical synthesis, mitigating the environmental impact of conventional processes. Assessing the green chemistry metrics in both solvent-free and previously reported solvent-based methods, our eco-friendly protocol demonstrates an E-factor of 7.40, a 51.7 % atom economy, a 45.5 % atom efficiency, 100 % carbon efficiency, and 11.9 % reaction mass efficiency when solvents are not used.
Collapse
Affiliation(s)
- Pravat Nayek
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha, 752050, India
| |
Collapse
|
4
|
Shen D, Sun C, Han Y, Luo Z, Ren T, Zhang Q, Huang W, Xie J, Jia Y, Chao M. Additive-free oxychlorination of unsaturated C-C bonds with tert-butyl hypochlorite and water. Org Biomol Chem 2024; 22:3080-3085. [PMID: 38563263 DOI: 10.1039/d4ob00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Herein we report an additive-free protocol for the facile synthesis of α,α-dichloroketones and α-chlorohydrins from various aryl terminal, diaryl internal, and aliphatic terminal alkynes and alkenes, respectively. The commercially available tert-butyl hypochlorite (tBuOCl) was employed as a suitable chlorinating reagent, being accompanied by the less harmful tBuOH as the by-product. In addition, the oxygen atoms in the products came from water rather than molecular oxygen, based on the 18O-labelling experiments. Meanwhile, the diastereoselectivity of the Z- and the corresponding E-alkenes has been compared and rationalized. Using a group of control experiments, the possible mechanisms have been proposed as the initial electrophilic chlorination of unsaturated C-C bonds in a Markovnikov-addition manner in general followed by a nucleophilic addition with water. This work simplified the oxychlorination method with a mild chlorine source and a green oxygen source under ambient conditions.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Chaoyue Sun
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Yun Han
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Zhen Luo
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Ting Ren
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Qin Zhang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Wenting Huang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Jianru Xie
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Ying Jia
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| | - Mianran Chao
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, P. R. China.
| |
Collapse
|
5
|
Zhou Y, Wang Y, Xu P, Han W, Xiong HY, Zhang G. Synthesis of Indolyl Phenyl Diketones through Visible-Light-Promoted Ni-Catalyzed Intramolecular Cyclization/Oxidation Sequence of Ynones. ACS ORGANIC & INORGANIC AU 2024; 4:241-247. [PMID: 38585509 PMCID: PMC10995934 DOI: 10.1021/acsorginorgau.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 04/09/2024]
Abstract
The combination of visible light catalysis and Ni catalysis has enabled the synthesis of indolyl phenyl diketones through the cyclization/oxidation process of ynones. This reaction proceeded under mild and base-free conditions and showed a broad scope and feasibility for gram-scale synthesis. Several natural products and biologically interesting molecules could be readily postfunctionalized by this method.
Collapse
Affiliation(s)
- Yufeng Zhou
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Yaping Wang
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Peidong Xu
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Weiwei Han
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Heng-Ying Xiong
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| | - Guangwu Zhang
- College
of Chemistry and Chemical Engineering, Henan
University, Kaifeng, 475004, P. R.
China
| |
Collapse
|
6
|
Chen DD, Zhang SL. Dual Oxidation of Epoxides with a High-Valent Cu(III)-CF 3 Compound and DMSO to Access 1,2-Diketones. J Org Chem 2023. [PMID: 38050841 DOI: 10.1021/acs.joc.3c01160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
This study reports sequential dehydrogenation and transfer oxygenation of 1,2-diarylepoxides by high-valent phenCu(III)(CF3)3 and DMSO to produce 1,2-diketones. The Cu(III)-CF3 compound serves as a CF3 radical source to abstract the hydrogen atom of the epoxide ring. The resulting ether α-carbon radical undergoes ring-opening rearrangement to give a ketone α-carbon radical intermediate, which is oxygenated by DMSO with the release of Me2S. The combination of a Cu(III)-CF3 compound and DMSO may be exploited to develop other novel oxidation reactions.
Collapse
Affiliation(s)
- Dou-Dou Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
7
|
Shen D, Zhong F, Ren T, Li L, Li Z, Yin J, Gong P, Zhang F, Lv C, Chao M. Alkyne Oxidation by a Vitamin B2-Based Photocatalytic System with Both H 2O and O 2 as the Oxygen Source. J Org Chem 2023; 88:15270-15281. [PMID: 37852799 DOI: 10.1021/acs.joc.3c01760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The employment of readily available photocatalysts and green oxygen atom sources is recognized as a promising strategy to develop sustainable catalysis for oxidation reactions. We herein reported a sacrificial reagent-free system consisting of riboflavin tetraacetate (RFT), an ester of natural vitamin B2 as the photocatalyst, and Sc(OTf)3 and NaCl as the cocatalysts for alkyne oxidation under blue light or even sunlight irradiation to produce 1,2-diketone in which the oxygen atoms were from both water and molecular oxygen, respectively. A major Cl-/Cl• cycle was proposed to be involved and achieved by the excited [RFT-2Sc3+]* complex via single electron transfer for the first time, distinguished from the OCl- active species by a two-electron process in previous flavin-halide photo-oxidation systems.
Collapse
Affiliation(s)
- Duyi Shen
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, P. R. China
| | - Fubi Zhong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Ting Ren
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Linghui Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Zihan Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Junzhong Yin
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Peiwei Gong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Fanjun Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Chengwei Lv
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, P. R. China
| | - Mianran Chao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
8
|
Feng Q, Wang Y, Zheng B, Huang S. Electrochemical Oxidative Cleavage of Alkynes to Carboxylic Acids. Org Lett 2023; 25:293-297. [PMID: 36587377 DOI: 10.1021/acs.orglett.2c04204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A sustainable method for converting terminal alkynes into their corresponding carboxylic acids is reported using synthetic electrolysis in an undivided cell at room temperature. This protocol, avoiding transition metal catalysis and stoichiometric chemical oxidants, tolerates a variety of aryl, heteroaryl, and alkyl akynes. Preliminary mechanistic studies demonstrate that sodium nitrite serves a triple role as the electrolyte, nitryl radical precursor, and a nitrosating reagent.
Collapse
Affiliation(s)
- Qingyuan Feng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yamin Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Binnan Zheng
- Ningxia Best Pharmaceutical Chemical Co., Ltd., Yinchuan 750411, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Co(II) and 2-amino-perimidinium based new generation hybrid material promoted facile dimerization of aroyl chloride: A route to α-diketone. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Echemendía R, de Jesus MP, Furniel LG, Day DP, Burtoloso ACB. Molecular Iodine Mediated Oxidation of Arylated α‐Carbonyl Sulfoxonium Ylides to 1,2‐Dicarbonyl Containing Compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Radell Echemendía
- University of Sao Paulo: Universidade de Sao Paulo Physical Chemistry BRAZIL
| | - Matheus P. de Jesus
- University of Sao Paulo: Universidade de Sao Paulo Physical Chemistry BRAZIL
| | - Lucas G. Furniel
- University of Sao Paulo: Universidade de Sao Paulo Physical Chemistry BRAZIL
| | - David P Day
- University of Sao Paulo: Universidade de Sao Paulo Physical Chemistry BRAZIL
| | - Antonio Carlos Bender Burtoloso
- UNIVERSITY OF SÃO PAULO PHYSICAL CHEMISTRY Avenida João Dagnone, 1100, Loteamento Habitacional São Carlos 1INSTITUTO DE QUIMICA DE SAO CARLOS, UNIVERSIDADE DE SAO PAULO, CAMPUS 2 13563-120 SÃO CARLOS BRAZIL
| |
Collapse
|
11
|
Natarajan P, Priya, Chuskit D. Persulfate-nitrogen doped graphene mixture as an oxidant for the synthesis of 3-nitro-4-aryl-2 H-chromen-2-ones from aryl alkynoate esters and nitrite. Org Biomol Chem 2022; 20:4616-4624. [PMID: 35608321 DOI: 10.1039/d2ob00827k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of 3-nitro-4-aryl-2H-chromen-2-ones in good yields have directly been obtained from aryl alkynoate esters and nitrite by employing a mixture of K2S2O8-nitrogen doped graphene as an oxidant in a watery medium at room temperature. A plausible mechanism for the reaction is also reported. It reveals that the product is formed through a cascade of nitro radical addition, spirocyclization, and ester migration. When compared to known methods for the synthesis of 3-nitro-4-aryl-2H-chromen-2-ones from aryl alkynoate esters, this protocol is environmentally friendly, sustainable, practical and energy efficient and does not use a harmful nitro source. Furthermore, nitrogen doped graphene used in this approach can be easily recovered and reused at least four times without losing its activity.
Collapse
Affiliation(s)
- Palani Natarajan
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Priya
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| | - Deachen Chuskit
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh - 160 014, India.
| |
Collapse
|
12
|
Pudner GL, Camp I, Scheerer JR. A Nonoxidative Sequence for the Preparation of 1,2-Diketone Derivatives Using Aldehyde and Organometallic Building Blocks. J Org Chem 2022; 87:8213-8222. [PMID: 35613467 DOI: 10.1021/acs.joc.2c00439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study investigates a synthetic sequence for the preparation of 1,2-diketone products. The sequence avoids oxidative conditions and instead employs reliable transformations including the Horner-Wadsworth-Emmons and addition of Grignard reagents to N-methyl-N-methoxy (Weinreb) amide intermediates. The reaction sequence is suitable for the synthesis of nonsymmetric aliphatic and aryl substituted derivatives.
Collapse
Affiliation(s)
- Gwyneth L Pudner
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Isabela Camp
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| | - Jonathan R Scheerer
- Department of Chemistry, William & Mary, P.O. Box 8795, Williamsburg, Virginia 23187, United States
| |
Collapse
|
13
|
Kong L, Meng J, Tian W, Liu J, Hu X, Jiang ZH, Zhang W, Li Y, Bai LP. I 2-Catalyzed Carbonylation of α-Methylene Ketones to Synthesize 1,2-Diaryl Diketones and Antiviral Quinoxalines in One Pot. ACS OMEGA 2022; 7:1380-1394. [PMID: 35036799 PMCID: PMC8757360 DOI: 10.1021/acsomega.1c06017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/10/2021] [Indexed: 05/03/2023]
Abstract
An efficient approach for the synthesis of 1,2-diaryl diketones was developed from readily available α-methylene ketones by catalysis of I2. In the same oxidation system, a novel one-pot procedure was established for the construction of antiviral and anticancer quinoxalines. The reactions proceeded well with a wide variety of substrates and good functional group tolerance, affording desired compounds in moderate to excellent yields. Quinoxalines 4ca and 4ad inhibited viral entry of SARS-CoV-2 spike pseudoviruses into HEK-293T-ACE2h host cells as dual blockers of both human ACE2 receptor and viral spike RBD with IC50 values of 19.70 and 21.28 μM, respectively. In addition, cytotoxic evaluation revealed that 4aa, 4ba, 4ia, and 4ab suppressed four cancer cells with IC50 values ranging from 6.25 to 28.55 μM.
Collapse
Affiliation(s)
- Lingkai Kong
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Jieru Meng
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wenyue Tian
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Jiazheng Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Xueping Hu
- School
of Chemistry and Chemical Engineering, Linyi
University, Linyi, Shandong 276000, People’s Republic of China
| | - Zhi-Hong Jiang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Wei Zhang
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| | - Yanzhong Li
- School
of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Li-Ping Bai
- State
Key Laboratory of Quality Research in Chinese Medicine, Macau Institute
for Applied Research in Medicine and Health, Guangdong-Hong Kong-Macao
Joint Laboratory of Respiratory Infectious Disease, Macau University of Science and Technology, Taipa 999078, Macau, People’s Republic
of China
| |
Collapse
|
14
|
Song J, Zhang K, Huang Z, Zhao J, Yang Z, Zong L, Chen J, Xie C, Jia X. A porous organic polymer supported Pd/Cu bimetallic catalyst for heterogeneous oxidation of alkynes to 1,2-diketones. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A reusable Pd/Cu bimetal-loaded porous organic polymer (Pd/Cu@POP–POPh3) has been developed for heterogeneous oxidation of various alkynes to afford the corresponding 1,2-diketones in high to excellent yields.
Collapse
Affiliation(s)
- Jiaxin Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Kai Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhongye Huang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jinyu Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Zhengyi Yang
- Chang-Kung Chuang Institute, and, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China
| | - Lingbo Zong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jianbin Chen
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China
| | - Congxia Xie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiaofei Jia
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
15
|
Michelet V, Marsicano V, Arcadi A. Gold‐Catalyzed Regioselective Oxyfluorination / Oxydifluorination vs. Diketonization of Phthalimido‐Protected Propargylamines with Selectfluor. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Veronique Michelet
- University of Cote d'Azur: Universite de Nice Sophia Antipolis CHEMISTRY Parc Valrose 06100 NICE FRANCE
| | - Vincenzo Marsicano
- Nice University: Universite de Nice Sophia Antipolis Chemistry Parc Valrose FRANCE
| | - Antonio Arcadi
- University of L'Aquila Department of Physical and Chemical Sciences: Universita degli Studi dell'Aquila Dipartimento di Scienze Fisiche e Chimiche Chemistry L'Aquila ITALY
| |
Collapse
|
16
|
Zhao Y, Guo X, Li S, Fan Y, Sun X, Tian L. PhB(OH) 2-Promoted Electrochemical Sulfuration-Formyloxylation of Styrenes and Selectfluor-Mediated Oxidation-Olefination. Org Lett 2021; 23:9140-9145. [PMID: 34783249 DOI: 10.1021/acs.orglett.1c03461] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report a PhB(OH)2-promoted electrochemical sulfuration-formyloxylation reaction of styrenes employing commercially available thiophenols/thiols as thiolating agents. Specifically, metal catalysts and external chemical oxidants are not needed in the reaction for the formation of β-formyloxy sulfides, and these sulfides can be further converted to (E)-vinyl sulfones via the Selectfluor-mediated oxidation-olefination. Notably, on the basis of this electrochemical oxidation strategy, β-hydroxy sulfide, β-formyloxy sulfoxide, β-formyloxy sulfone, and (E)-vinyl sulfoxide can also be easily prepared.
Collapse
Affiliation(s)
- Yulei Zhao
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuqiang Guo
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shuai Li
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Yuhang Fan
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xuejun Sun
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Laijin Tian
- Shandong Key Laboratory of Life-Organic Analysis, Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| |
Collapse
|
17
|
Kumar A, Sridharan V. Transition Metal‐Catalyzed Synthesis of 1,2‐Diketones: An Overview. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Atul Kumar
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences Central University of Jammu Rahya-Suchani (Bagla), District-Samba Jammu-181143, J&K India
| |
Collapse
|