1
|
Thorpe MP, Blackwell DJ, Knollmann BC, Johnston JN. Backbone-Determined Antiarrhythmic Structure-Activity Relationships for a Mirror Image, Oligomeric Depsipeptide Natural Product. J Med Chem 2024; 67:12205-12220. [PMID: 38958200 DOI: 10.1021/acs.jmedchem.4c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Cyclic oligomeric depsipeptides (COD) are a structural class within naturally occurring compounds with a wide range of biological activity. Verticilide is a COD (24-membered ring) that was identified by its inhibition of insect ryanodine receptor (RyR). We have since found that the enantiomer of verticilide (ent-verticilide, 1) is a potent inhibitor of mammalian RyR2, a cardiac calcium channel, and therefore a potential antiarrhythmic agent. Oddly, nat-verticilide does not inhibit RyR2. To further develop ent-verticilide as an antiarrhythmic, we explored potential SAR through systematic modification of the ester's functionality to both N-H and N-Me amides. The syntheses of these ent-verticilide-inspired analogs are detailed using a monomer-based platform enabled by enantioselective catalysis. Two analogs among 23 exhibited measurable reduction of calcium sparks in a functional assay of RyR2 activity. These findings illustrate the value of natural product-inspired therapeutic development, but the less-studied approach where the non-natural enantiomeric series harbors important SAR.
Collapse
Affiliation(s)
- Madelaine P Thorpe
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Bjorn C Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
2
|
Šeflová J, Schwarz JA, Smith AN, Svensson B, Blackwell DJ, Phillips TA, Nikolaienko R, Bovo E, Rebbeck RT, Zima AV, Thomas DD, Van Petegem F, Knollmann BC, Johnston JN, Robia SL, Cornea RL. RyR2 Binding of an Antiarrhythmic Cyclic Depsipeptide Mapped Using Confocal Fluorescence Lifetime Detection of FRET. ACS Chem Biol 2023; 18:2290-2299. [PMID: 37769131 PMCID: PMC11648969 DOI: 10.1021/acschembio.3c00376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Hyperactivity of cardiac sarcoplasmic reticulum (SR) ryanodine receptor (RyR2) Ca2+-release channels contributes to heart failure and arrhythmias. Reducing the RyR2 activity, particularly during cardiac relaxation (diastole), is a desirable therapeutic goal. We previously reported that the unnatural enantiomer (ent) of an insect-RyR activator, verticilide, inhibits porcine and mouse RyR2 at diastolic (nanomolar) Ca2+ and has in vivo efficacy against atrial and ventricular arrhythmia. To determine the ent-verticilide structural mode of action on RyR2 and guide its further development via medicinal chemistry structure-activity relationship studies, here, we used fluorescence lifetime (FLT)-measurements of Förster resonance energy transfer (FRET) in HEK293 cells expressing human RyR2. For these studies, we used an RyR-specific FRET molecular-toolkit and computational methods for trilateration (i.e., using distances to locate a point of interest). Multiexponential analysis of FLT-FRET measurements between four donor-labeled FKBP12.6 variants and acceptor-labeled ent-verticilide yielded distance relationships placing the acceptor probe at two candidate loci within the RyR2 cryo-EM map. One locus is within the Ry12 domain (at the corner periphery of the RyR2 tetrameric complex). The other locus is sandwiched at the interface between helical domain 1 and the SPRY3 domain. These findings document RyR2-target engagement by ent-verticilide, reveal new insight into the mechanism of action of this new class of RyR2-targeting drug candidate, and can serve as input in future computational determinations of the ent-verticilide binding site on RyR2 that will inform structure-activity studies for lead optimization.
Collapse
Affiliation(s)
- Jaroslava Šeflová
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Jacob A Schwarz
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Abigail N Smith
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Bengt Svensson
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Daniel J Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| | - Taylor A Phillips
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Roman Nikolaienko
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Robyn T Rebbeck
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Björn C Knollmann
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jeffrey N Johnston
- Department of Chemistry & Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois 60153, United States
| | - Răzvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Smith A, Thorpe MP, Blackwell DJ, Batiste SM, Hopkins CR, Schley ND, Knollmann BC, Johnston JN. Structure-Activity Relationships for the N-Me- Versus N-H-Amide Modification to Macrocyclic ent-Verticilide Antiarrhythmics. ACS Med Chem Lett 2022; 13:1755-1762. [PMID: 36385927 PMCID: PMC9661706 DOI: 10.1021/acsmedchemlett.2c00377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
The synthesis of all N-Me and N-H analogues of ent-verticilide is described, enabling a structure-activity relationship study based on cardiac ryanodine receptor (RyR2) calcium ion channel inhibition. The use of permeabilized cardiomyocytes allowed us to correlate the degree of N-methylation with activity without concern for changes in passive membrane permeability that these modifications can cause. A key hypothesis was that the minimal pharmacophore may be repeated in this cyclic oligomeric octadepsipeptide (a 24-membered macrocycle), opening the possibility that target engagement will not necessarily be lost with a single N-Me → N-H modification. The effect in the corresponding 18-membered ring oligomer (ent-verticilide B1) was also investigated. We report here that a high degree of N-methyl amide content is critical for activity in the ent-verticilide series but not entirely so for the ent-verticilide B1 series.
Collapse
Affiliation(s)
- Abigail
N. Smith
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Madelaine P. Thorpe
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Daniel J. Blackwell
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville 37235, Tennessee, United States
| | - Suzanne M. Batiste
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Corey R. Hopkins
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha 68198, Nebraska, United States
| | - Nathan D. Schley
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| | - Bjorn C. Knollmann
- Department
of Medicine, Vanderbilt University Medical
Center, Nashville 37235, Tennessee, United States
| | - Jeffrey N. Johnston
- Department
of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville 37235, Tennessee, United States
| |
Collapse
|
4
|
Vu LP, Gütschow M. Diketomorpholines: Synthetic Accessibility and Utilization. ACS OMEGA 2022; 7:48-54. [PMID: 35036677 PMCID: PMC8756451 DOI: 10.1021/acsomega.1c05964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Diketomorpholines (DKMs; morpholine-2,5-diones) possess a six-membered ring with a lactone and lactam moiety and belong to the family of cyclodepsipeptides. In this review, the synthetic accessibility of DKMs is summarized and their utilization, in particular, for ring-opening polymerization reactions, is highlighted. The occurrence of the DKM scaffold in natural products encompasses small monocyclic compounds but also complex, polycyclic representatives with a fused DKM ring.
Collapse
|
5
|
Smith AN, Blackwell DJ, Knollmann BC, Johnston JN. Ring Size as an Independent Variable in Cyclooligomeric Depsipeptide Antiarrhythmic Activity. ACS Med Chem Lett 2021; 12:1942-1947. [PMID: 34917258 DOI: 10.1021/acsmedchemlett.1c00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Hit-to-lead studies employ a variety of strategies to optimize binding to a target of interest. When a structure for the target is available, hypothesis-driven structure-activity relationships (SAR) are a powerful strategy for refining the pharmacophore to achieve robust binding and selectivity characteristics necessary to identify a lead compound. Recrafting the three-dimensional space occupied by a small molecule, optimization of hydrogen bond contacts, and enhancing local attractive interactions are traditional approaches in medicinal chemistry. Ring size, however, is rarely able to be leveraged as an independent variable because most hits lack the symmetry required for such a study. Our discovery that the cyclic oligomeric depsipeptide ent-verticilide inhibits mammalian cardiac ryanodine receptor calcium release channels with submicromolar potency provided an opportunity to explore ring size as a variable, independent of other structural or functional group changes. We report here that ring size can be a critical independent variable, suggesting that modest conformational changes alone can dramatically affect potency.
Collapse
Affiliation(s)
- Abigail N. Smith
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Daniel J. Blackwell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Bjorn C. Knollmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37235, United States
| | - Jeffrey N. Johnston
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|