1
|
Guo Q, Xie C, Zi G, Lai X, Deerberg J, Hou G. Ir-Catalyzed Asymmetric Hydrogenation of N-Fused Heteroarenes with High Nitrogen Density: An Access to Chiral 2,5-Disubstituted 5,6-Dihydropyrrolo[1,2- a][1,2,4]triazolo[5,1- c]pyrazines. Org Lett 2024; 26:7363-7369. [PMID: 39178146 DOI: 10.1021/acs.orglett.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
A highly enantioselective Ir-catalyzed asymmetric hydrogenation of 2,5-disubstituted pyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazines containing four nitrogen atoms has been first realized. Under additive-free conditions, a variety of chiral 2,5-disubstituted 5,6-dihydropyrrolo[1,2-a][1,2,4]triazolo[5,1-c]pyrazines can be afforded in high yields (86-98%) with excellent enantioselectivities of up to 99% ee. This method provides a straightforward strategy for the efficient synthesis of chiral multinitrogen polyheterocyclic compounds.
Collapse
Affiliation(s)
- Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xinzhong Lai
- Chemical Process Research and Development, Department of Chemistry, BeiGene, Ltd., Beijing 102206, China
| | - Joerg Deerberg
- Chemical Process Research and Development, Department of Chemistry, BeiGene, Ltd., Beijing 102206, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Zhao W, Wang W, Zhou H, Liu Q, Ma Z, Huang H, Chang M. An Asymmetric Hydrogenation/N-Alkylation Sequence for a Step-Economical Route to Indolizidines and Quinolizidines. Angew Chem Int Ed Engl 2023; 62:e202308836. [PMID: 37643998 DOI: 10.1002/anie.202308836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
The direct catalytic asymmetric hydrogenation of pyridines for the synthesis of piperidines remains a challenge. Herein, we report a one-pot asymmetric hydrogenation of pyridines with subsequent N-alkylation using a traceless Brønsted acid activation strategy. Catalyzed by an iridium-BINAP complex, the substrates undergo ketone reduction, cyclization and pyridine hydrogenation in sequence to form indolizidines and quinolizidines. The absolute configuration of the stereocenter of the alcohol is retained and influences the formation of the second stereocenter. Experimental and theoretical mechanistic studies reveal that the chloride anion and certain noncovalent interactions govern the stereoselectivity of the cascade reaction throughout the catalytic process.
Collapse
Affiliation(s)
- Wei Zhao
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Wenji Wang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Huan Zhou
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Qishan Liu
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Zhiqing Ma
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| | - Haizhou Huang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
| | - Mingxin Chang
- College of Chemistry and Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi, 712100, P. R. China
- College of Plant Protection, Shaanxi Research Center of Biopesticide Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, P. R. China
| |
Collapse
|
3
|
Yang L, Liu Z, Tang T, Tang S, Li B, Wang B. Ruthenium(II)-Catalyzed Grignard-Type Nucleophilic Addition of C(sp 2)-H Bonds to Unactivated Aldehydes. J Org Chem 2022; 87:14723-14730. [PMID: 36256602 DOI: 10.1021/acs.joc.2c02039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Grignard-type nucleophilic addition of C(sp2)-H bonds to aldehydes catalyzed by high-oxidation-state transition metal complexes is limited to activated aldehydes. Herein, we report the first example of Grignard-type nucleophilic addition of C(sp2)-H bonds to unactivated aldehydes catalyzed by high-oxidation-state ruthenium(II). The reaction has mild reaction conditions and good functional group tolerance. The corresponding alcohol products are obtained in good to excellent yields.
Collapse
Affiliation(s)
- Lidong Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Zezhao Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Tingyu Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Shibiao Tang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Bin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Baiquan Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
4
|
Gunasekar R, Goodyear RL, Silvestri IP, Xiao J. Recent Developments in Enantio- and Diastereoselective Hydrogenation of N-Heteroaromatic Compounds. Org Biomol Chem 2022; 20:1794-1827. [DOI: 10.1039/d1ob02331d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The enantioselective and diastereoselective hydrogenation of N-heteroaromatic compounds is an efficient strategy to access chirally enriched cyclic heterocycles, which often possess highly bio-active properties. This strategy, however, has only been...
Collapse
|