1
|
Sosnin D, Izadyar M, Abedi SAA, Liu X, Aprahamian I. "Clicked" Hydrazone Photoswitches. J Am Chem Soc 2025; 147:14930-14935. [PMID: 40279463 DOI: 10.1021/jacs.5c02183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
The length of the linker connecting a photoswitch to a material significantly influences the latter's properties, with "zero-length" linkers being ideal for optimal photomodulation. The 1,2,3-triazole formed through the "click" reaction between an azide and an alkyne has been used as such a linking motif in various areas of research spanning from materials to biological chemistry. However, its effect, as well as that of its regioisomers, on the photoswitching properties has not been fully elucidated. Here, we report on a series of triazole-containing hydrazone photoswitches, investigating how the connectivity (1,4 vs 1,5) between the triazole and the switch affects the photoswitching properties. The structure-property analysis and DFT/TD-DFT calculations show that the switching efficiency of N-connected 1,4-triazole hydrazones is lower than their C-connected counterparts, while the 1,5-triazole hydrazone exhibits an overall better photoswitching efficiency.
Collapse
Affiliation(s)
- Daniil Sosnin
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Mohammad Izadyar
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Syed Ali Abbas Abedi
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Ivan Aprahamian
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Mravec B, Budzák Š, Medved' M, Pašteka LF, Lazar P, Procházková E, Růžička A, Kožíšek J, Vegso K, Bodik M, Šiffalovič P, Švec P, Filo J, Cigáň M. Solid-State Photoswitching of Hydrazones Based on Excited-State Intramolecular Proton Transfer. J Am Chem Soc 2025; 147:2421-2431. [PMID: 39772509 DOI: 10.1021/jacs.4c12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The development of new photochromic systems is motivated by the possibility of controlling the properties and functions of materials with high spatial and temporal resolution in a reversible manner. While there are several classes of photoswitches operating in solution, the design of systems efficiently operating in the solid state remains highly challenging, mainly due to limitations related to confinement effects. Triaryl-hydrazones represent a relatively new subclass of bistable hydrazone photoswitches exhibiting efficient Z/E photochromism in solution. As "large volume" photoswitches, they have been anticipated to display only limited solid-state photoswitching. Here, we show that the Z isomers of newly prepared triaryl-hydrazones containing a perfluorinated hydrazine phenyl ring (PHZs) exhibit impressive solid-state photochromism with an unexpected light-induced red-shift of the absorption maximum. Based on (time-dependent) density functional theory calculations, a photoswitching reaction mechanism involving the excited state intramolecular proton transfer has been proposed, which rationalizes the observed red-shift in absorption by the formation of a metastable proton transfer structure. Advanced experimental techniques including X-ray diffraction, solid-state NMR and EPR spectroscopy, and confocal Raman microscopy corroborated the suggested mechanism and revealed that the observed photochromism is a superficial phenomenon. This atypical photochromic behavior of PHZs can also be realized by using visible light and in the form of thin films, which manifests their potential use in optics and optoelectronics.
Collapse
Affiliation(s)
- Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica SK-974 01, Slovakia
| | - Miroslav Medved'
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, Banská Bystrica SK-974 01, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Lukáš F Pašteka
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, SK-842 15 Bratislava, Slovakia
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Nijenborgh 3, 9747 AG Groningen, The Netherlands
| | - Petr Lazar
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 27, 779 00 Olomouc, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-160 00 Prague, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Jozef Kožíšek
- Department of Physical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-81237 Bratislava, Slovakia
| | - Karol Vegso
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Michal Bodik
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Peter Šiffalovič
- Center for Advanced Materials and Applications (CEMEA), Slovak Academy of Sciences, Dubravska cesta 5807/9, SK-84511 Bratislava, Slovakia
| | - Peter Švec
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 11 Bratislava, Slovakia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava SK-842 15, Slovakia
| |
Collapse
|
3
|
Dhayalan V, Dodke VS, Pradeep Kumar M, Korkmaz HS, Hoffmann-Röder A, Amaladass P, Dandela R, Dhanusuraman R, Knochel P. Recent synthetic strategies for the functionalization of fused bicyclic heteroaromatics using organo-Li, -Mg and -Zn reagents. Chem Soc Rev 2024; 53:11045-11099. [PMID: 39311874 DOI: 10.1039/d4cs00369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
This review highlights the use of functionalized organo-Li, -Mg and -Zn reagents for the construction and selective functionalization of 5- and 6-membered fused bicyclic heteroaromatics. Special attention is given to the discussion of advanced syntheses for the preparation of highly functionalized heteroaromatic scaffolds, including quinolines, naphthyridines, indoles, benzofurans, benzothiophenes, benzoxazoles, benzothiazoles, benzopyrimidines, anthranils, thienothiophenes, purine coumarins, chromones, quinolones and phthalazines and their fused heterocyclic derivatives. The organometallic reagents used for the desired functionalizations of these scaffolds are generally prepared in situ using the following methods: (i) through directed selective metalation reactions (DoM), (ii) by means of halogen/metal exchange reactions, (iii) through oxidative metal insertions (Li, Mg, Zn), and (iv) by transmetalation reactions (organo-Li and Mg transmetalations with ZnCl2 or ZnO(Piv)2). The resulting reactive organometallic reagents allow a wide range of C-C, C-N and C-X cross-coupling reactions with different electrophiles, employing in particular Kumada or Negishi protocols among other transition metal (Pd, Ni, Co, Cu, Cr, Fe, etc.)-catalyzed processes. In addition, key developments concerning selective metalation techniques will be presented, which rely on the use of RLi, LDA and TMP metal bases. These methods are now widely employed in organic synthetic chemistry and have proven to be particularly valuable for drug development programs in the pharmaceutical industry. New and improved protocols have resulted in many Li, Mg and Zn organyls now being compatible with functionalized aryl, heteroaryl, alkenyl, alkynyl and alkyl compounds even in the presence of labile functional groups, making these reagents well-suited for C(sp2)-C(sp2), C(sp2)-C(sp) and C(sp2)-C(sp3) cross-coupling reactions with fused heteroaryl halides. In addition, the use of some transition metal-catalyzed processes occasionally allows a reversed role of the reactants in cross-coupling reactions, providing alternative synthetic routes for the preparation of fused heteroaromatic-based bioactive drugs and natural products. In line with this, this article points to novel methods for the functionalization of bicyclic heteroaromatic scaffolds by organometallic reagents that have been published in the period 2010-2023.
Collapse
Affiliation(s)
- Vasudevan Dhayalan
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Vishal S Dodke
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Marappan Pradeep Kumar
- Department of Chemistry, National Institute of Technology Puducherry, Karaikal-609609, Union Territory Puducherry, India.
| | - Hatice Seher Korkmaz
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Anja Hoffmann-Röder
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| | - Pitchamuthu Amaladass
- Department of Chemistry, Madanapalle Institute of Technology & Science, Madanapalle 517325, Andhra Pradesh, India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, IIT, Kharagpur extension Centre, Mouza Samantpuri, Bhubaneswar-751013, Odisha, India
| | - Ragupathy Dhanusuraman
- Central Instrumentation Facility (CIF), School of Physical, Chemical and Applied Sciences, Pondicherry University, Puducherry-605014, India
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilians-University München, Butenandtstrasse 5-13, Haus F, 81377 Munich, Germany.
| |
Collapse
|
4
|
Dang DK, Einkauf JD, Ma X, Custelcean R, Ma YZ, Zimmerman PM, Bryantsev VS. Photoisomerization mechanism of iminoguanidinium receptors from spectroscopic methods and quantum chemical calculations. Phys Chem Chem Phys 2024; 26:24008-24020. [PMID: 39246286 DOI: 10.1039/d4cp02747g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The hydrazone functional group, when coupled with a pyridyl substituent, offers a unique class of widely tunable photoswitches, whose E-to-Z photoisomerization equilibria can be controlled through intramolecular hydrogen bonding between the N-H hydrazone donor and the pyridyl acceptor. However, little is known about the photoisomerization mechanism in this class of compounds. To address this issue, we report a pyridine-appended iminoguanidinium photoswitch that is functionally related to acylhydrazones and provides insight into the photoisomerization processes between the E and Z configurations. The E-to-Z photoisomerization of the E-2-pyridyl-iminoguanidinium cation (2PyMIG) in DMSO, prepared as the bromide salt, was quantified by 1H NMR, and probed in real time with ultrafast laser spectroscopy. The photoisomerization process occurs on a picosecond timescale, resulting in low fluorescence yields. The multiconfigurational reaction path found with the growing string method features a small barrier (4.3 or 6.5 kcal mol-1) that the E isomer in the π-π* state must overcome to reach the minimum energy conical intersection (MECI) connecting the E and Z isomers of 2PyMIG. While two possible pathways exist depending on the orientation of the pyridine ring, both exhibit the same qualitative features along the path and at their MECIs, involving simultaneous changes in the CCNN and CNNC dihedral angles. Furthermore, the ground state barrier for pyridine ring rotation is readily accessible, thus a low barrier pathway to the experimentally observed Z isomer exists for both MECIs leading to a transition from the E isomer to photoproduct. Combining multiconfigurational reaction path calculations using growing string method with time-resolved fluorescence spectroscopy provided crucial insights into the photoisomerization process of 2PyMIG, resulting in both the computational and experimental results pointing to rapid photoisomerization via a surface crossing between the singlet π-π* and the ground states.
Collapse
Affiliation(s)
- Duy-Khoi Dang
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jeffrey D Einkauf
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Xinyou Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Radu Custelcean
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Ying-Zhong Ma
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Vyacheslav S Bryantsev
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6119, USA.
| |
Collapse
|
5
|
Kim M, Hillel C, Edwards K, Pietro W, Mermut O, Barrett CJ. Chitosan-azo dye bioplastics that are reversibly resoluble and recoverable under visible light irradiation. RSC Adv 2024; 14:25771-25784. [PMID: 39156744 PMCID: PMC11327658 DOI: 10.1039/d4ra02211d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024] Open
Abstract
Biopolymer composite materials were prepared by combining bio-sourced cationic water-soluble chitosan with bi-functional water-soluble anionic azo food dyes amaranth (AMA) or allura red (ALR) as ionic cross-linkers, mixing well in water, and then slow-drying in air. The electrostatically-assembled ionically-paired films showed good long-term stability to dissolution, with no re-solubility in water, and competitive mechanical properties as plastic materials. However, upon exposure of the bioplastics to low power light at sunlight wavelengths and intensities stirring in water, the stable materials photo-disassembled back to their water-soluble and low-toxicity (edible) constituent components, via structural photo-isomerization of the azo ionic crosslinkers. XRD, UV-vis, and IR spectroscopy confirmed that these assemblies are reversibly recoverable and so can in principle represent fully recyclable, environmentally degradable materials triggered by exposure to sunlight and water after use, with full recovery of starting components ready for re-use. A density functional theory treatment of the amaranth azo dye identified a tautomeric equilibrium favouring the hydrazone form and rationalized geometrical isomerization as a mechanism for photo-disassembly. The proof-of-principle suitability of films of these biomaterial composites as food industry packaging was assessed via measurement of mechanical, water and vapour barrier properties, and stability to solvent tests. Tensile strength of the composite materials was found to be 25-30 MPa, with elongation at break 3-5%, in a range acceptable as competitive for some applications to replace oil-based permanently insoluble non-recyclable artificial plastics, as fully recyclable, recoverable, and reusable low-toxicity green biomaterials in natural environmental conditions.
Collapse
Affiliation(s)
- Mikhail Kim
- Department of Chemistry, McGill University Montreal QC Canada
| | - Coral Hillel
- Department of Physics and Astronomy, York University Toronto ON Canada
| | - Kayrel Edwards
- Department of Chemistry, McGill University Montreal QC Canada
| | - William Pietro
- Department of Chemistry, York University Toronto ON Canada
| | - Ozzy Mermut
- Department of Physics and Astronomy, York University Toronto ON Canada
- Department of Chemistry, York University Toronto ON Canada
| | - Christopher J Barrett
- Department of Chemistry, McGill University Montreal QC Canada
- Department of Physics and Astronomy, York University Toronto ON Canada
| |
Collapse
|
6
|
Hegedüsová L, Blaise N, Pašteka LF, Budzák Š, Medveď M, Filo J, Mravec B, Slavov C, Wachtveitl J, Grabarz AM, Cigáň M. Enhancing the Potential of Fused Heterocycle-Based Triarylhydrazone Photoswitches. Chemistry 2024; 30:e202303509. [PMID: 38212244 DOI: 10.1002/chem.202303509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 01/13/2024]
Abstract
Triarylhydrazones represent an attractive class of photochromic compounds offering many interesting features including high molar absorptivity, good addressability, and extraordinary thermal stability. In addition, unlike most other hydrazone-based photoswitches, they effectively absorb light above 365 nm. However, previously prepared triaryhydrazones suffer from low quantum yields of the Z→E photoisomerization. Here, we have designed a new subclass of naphthoyl-benzothiazole hydrazones that balance the most beneficial features of previously reported naphthoyl-quinoline and benzoyl-pyridine triarylhydrazones. These preserve the attractive absorption characteristics, exhibit higher thermal stability of the metastable form than the former and enhance the rate of the Z→E photoisomerization compared to the later, as a result of the weakening of the intramolecular hydrogen bonding between the hydrazone hydrogen and the benzothiazole moiety. Introducing the benzothiazole motif extends the tunability of the photochromic behaviour of hydrazone-based switches.
Collapse
Affiliation(s)
- Lea Hegedüsová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Nadine Blaise
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Frankfurt am Main, 60438, Germany
| | - Lukáš F Pašteka
- Van Swinderen Institute for Particle Physics and Gravity, University of Groningen, Groningen, 9747AG, The Netherlands
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Šimon Budzák
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, 97400, Slovakia
| | - Miroslav Medveď
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Banská Bystrica, 97400, Slovakia
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, 77900, Czechia
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Bernard Mravec
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, Tampa, FL 33620, Florida, US
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Faculty of Biochemistry, Chemistry, Pharmacy, Goethe University, Frankfurt am Main, 60438, Germany
| | - Anna M Grabarz
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wrocław, 50370, Poland
| | - Marek Cigáň
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, 84215, Slovakia
| |
Collapse
|
7
|
Zhang J, Shen H, Liu X, Yang X, Broman SL, Wang H, Li Q, Lam JWY, Zhang H, Cacciarini M, Nielsen MB, Tang BZ. A Dihydroazulene‐Based Photofluorochromic AIE System for Rewritable 4D Information Encryption. Angew Chem Int Ed Engl 2022; 61:e202208460. [DOI: 10.1002/anie.202208460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Jianyu Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Hanchen Shen
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Xinyue Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Xueqin Yang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Søren Lindbæk Broman
- Department of Chemistry University of Copenhagen Universitetsparken 5 Copenhagen 2100 Denmark
| | - Haoran Wang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Qiyao Li
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Zhejiang University Hangzhou 310027 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Martina Cacciarini
- Department of Chemistry University of Florence via della Lastruccia 3–13 Sesto Fiorentino, Florence 50019 Italy
| | | | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials The Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong 999077 China
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
8
|
Zhang J, Shen H, Liu X, Yang X, Broman SL, Wang H, Li Q, Lam JWY, Zhang H, Cacciarini M, Nielsen MB, Tang BZ. A Dihydroazulene‐based Photofluorochromic AIE System for Rewritable 4D Information Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jianyu Zhang
- The Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay, Kowloon 999077 Hong Kong HONG KONG
| | - Hanchen Shen
- The Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay, Kowloon 999077 Hong Kong HONG KONG
| | - Xinyue Liu
- The Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay, Kowloon 999077 Hong Kong HONG KONG
| | - Xueqin Yang
- The Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay, Kowloon 999077 Hong Kong HONG KONG
| | - Søren Lindbæk Broman
- University of Copenhagen: Kobenhavns Universitet Department of Chemistry 2100 Copenhagen DENMARK
| | - Haoran Wang
- The Hong Kong University of Science and Technology Department of Chemistry Clear Water Bay, Kowloon 999077 Hong Kong HONG KONG
| | - Qiyao Li
- The Chinese University of Hong Kong - Shenzhen School of Science and Engineering 518172 Shenzhen CHINA
| | - Jacky W. Y. Lam
- The Hong Kong University of Science and Technology Department of Chemistry 999077 Hong Kong HONG KONG
| | - Haoke Zhang
- Zhejiang University Department of Polymer Science and Engineering No. 866 Yuhangtang Rd 310027 Hangzhou CHINA
| | - Martina Cacciarini
- University of Florence: Universita degli Studi di Firenze Department of Chemistry via della Lastruccia 3-13, Sesto Fiorentino 50019 Florence ITALY
| | - Mogens Brøndsted Nielsen
- University of Copenhagen: Kobenhavns Universitet Department of Chemistry Universitetsparken 5 2100 Copenhagen DENMARK
| | - Ben Zhong Tang
- The Chinese University of Hong Kong, Shenzhen School of Science and Engineering 2001 Longxiang Boulevard, Longgang District 518172 Shenzhen CHINA
| |
Collapse
|