1
|
Attorresi CI, Ramírez JA, Westermann B. Formaldehyde surrogates in multicomponent reactions. Beilstein J Org Chem 2025; 21:564-595. [PMID: 40099299 PMCID: PMC11912682 DOI: 10.3762/bjoc.21.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Formaldehyde emerges as a cornerstone in multicomponent reactions, mainly prized for its robust reactivity. Yet, alongside these beneficial traits, this highly reactive C1-building block raises concerns, primarily regarding its toxicity. One notable issue is the challenge of controlling the formation of undesired byproducts during its reactions. This review explores alternative C1-building blocks that serve as surrogates for formaldehyde, aiming to mitigate some of the challenges associated with its use in multicomponent reactions. By identifying these alternatives, toxicity concerns and improved reaction control can be addressed, paving the way for more efficient and sustainable synthetic methodologies.
Collapse
Affiliation(s)
- Cecilia I Attorresi
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Intendente Güiraldes 2160, Pabellón 2, 3° Piso, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Javier A Ramírez
- CONICET - Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), Ciudad Universitaria, Intendente Güiraldes 2160, Pabellón 2, 3° Piso, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Bernhard Westermann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
2
|
Kumar S, Dey A, Maiti B, Das S, Pasuparthy SD, Padala K. A Comprehensive Exploration of the Synergistic Relationship between DMSO and Peroxide in Organic Synthesis. Top Curr Chem (Cham) 2024; 382:36. [PMID: 39548041 DOI: 10.1007/s41061-024-00482-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 10/27/2024] [Indexed: 11/17/2024]
Abstract
In the realm of organic synthesis, reagents can serve not only as solvents but also as synthons. Dimethyl sulfoxide (DMSO) is recognized for its efficiency in this dual capacity, enabling diverse chemical transformations. DMSO can generate various synthons, including methyl, methylene, methine, oxygen, and methyl sulfoxide, broadening the accessible compound repertoire. Activation of DMSO as a reagent relies heavily on synergies with secondary agents like peroxide, persulfate, or iodine. Recent years have witnessed a surge in innovative synthetic techniques harnessing the synergistic interplay of DMSO and peroxide, leading to environmentally friendly and cost-effective reactions with mild conditions. This review highlights the synergistic effects of DMSO and peroxides (up to 2023), detailing their activation mechanisms and the generation of various synthons, along with numerous reported derivatives. Although this topic has received considerable attention in recent years, there are numerous discrepancies and a plethora of possibilities yet to be explored. We anticipate that this review will significantly support researchers in advancing their innovations to a greater extent in the future.
Collapse
Affiliation(s)
- Sumit Kumar
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India.
| | - Soumyadip Das
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sai Deepak Pasuparthy
- Department of Chemistry, School of Advanced Sciences, VIT, Vellore, 632014, Tamil Nadu, India
| | - Kishor Padala
- Department of Chemistry, Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India.
| |
Collapse
|
3
|
Huang X, Zhou J, Pei SC, Cui HL. TBHP/Et 3N-Promoted Chemoselective Formylation and Peroxidation of Pyrrolo[2,1- a]isoquinolines. J Org Chem 2024; 89:6353-6363. [PMID: 38625867 DOI: 10.1021/acs.joc.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
An efficient formylation of pyrrolo[2,1-a]isoquinoline derivatives has been reached by the use of TBHP (tBuOOH) and Et3N as the mediator. In this strategy, CHO and CDO can be readily incorporated into heteroarenes by the utilization of CHCl3 and CDCl3 as the carbonyl sources. Interestingly, a solvent-controlled chemoselectivity was observed. The use of PhCl as a solvent resulted in dearomatization and peroxidation of pyrrolo[2,1-a]isoquinolines, delivering functionalized peroxides in 53-64% yields.
Collapse
Affiliation(s)
- Xiang Huang
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Jing Zhou
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| | - Shu-Chen Pei
- School of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, P. R. China
| |
Collapse
|
4
|
Bhattacharjee S, Hajra A. Site-selective direct nitration of 2 H-indazoles: easy access to 7-nitroindazoles. Chem Commun (Camb) 2024; 60:4076-4079. [PMID: 38506140 DOI: 10.1039/d4cc00214h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
A new site-selective methodology for C-H nitration of 2H-indazoles has been accomplished at the C7 position using iron(III) nitrate. This strategy enables practical access to an array of 7-nitroindazoles with broad functional group tolerance in good yields. The synthesized products have been proven as valuable synthetic intermediates by demonstrating the synthetic utility. Mechanistic investigations indicate that the reaction goes through a radical pathway.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
5
|
Xu L, Wang A, Shi X, He Q, Jiang TS. Dimethyl Sulfoxide Provides Three Different Units in Synthesis of Chroman-4-ones Containing Sulfur and a Quaternary Carbon Center under HOAc Conditions. J Org Chem 2023; 88:13466-13474. [PMID: 37733936 DOI: 10.1021/acs.joc.3c00832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
HOAc-promoted construction of chroman-4-ones with a sulfur atom and an α-carbonyl quaternary carbon center directly from ortho-hydroxyacetophenones and DMSO is described. In these unique reactions, DMSO is activated by HOAc and provides three different units (CH2, CH2OH, and CH2SMe) in the target molecules. This reaction displays good substrate scope and reaction yields with a series of substitutes. The mechanism showed that the three units were formed in sequential order.
Collapse
Affiliation(s)
- Lihong Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Anan Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Xu Shi
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Qian He
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
| | - Tao-Shan Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, P.R. China
| |
Collapse
|
6
|
Zhang G, Zhang Y, Li P, Zhou C, Wang M, Wang L. Metal-Free Synthesis of 2 H-Indazole Skeletons by Photochemistry or Thermochemistry. J Org Chem 2023; 88:12341-12356. [PMID: 37582245 DOI: 10.1021/acs.joc.3c01091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A simple and tuned synthesis of a 2H-indazole skeleton under metal-free conditions was developed. Under visible-light irradiation at room temperature, 2-((aryl/alkyl/H)ethynyl))aryltriazenes reacted with arylsulfinic acids to afford 3-functionalized 2H-indazoles without extra photocatalyst via an electron donor-acceptor complex. In the presence of arylsulfinic acid, 2-(ethynyl)aryltriazenes underwent an intramolecular oxidation/cyclization to provide 2H-indazole-3-carbaldehydes at 50 °C in air.
Collapse
Affiliation(s)
- Gan Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chao Zhou
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Min Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education and Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Scienes, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Sharma R, Chaudhary S. Regiodivergent Cu-Promoted, AcOH-Switchable Distal Versus Proximal Direct Cyanation of 1-Aryl-1 H-indazoles and 2-Aryl-2 H-indazoles via Aerobic Oxidative C-H Bond Activation. J Org Chem 2022; 87:16188-16203. [PMID: 36417354 DOI: 10.1021/acs.joc.2c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A copper-promoted regiodivergent, AcOH-switchable, distal and proximal direct cyanation of N-aryl-(1H/2H)-indazoles via aerobic oxidative C(sp2)-H bond activation has been developed. The inclusion or exclusion of AcOH as an additive is the foremost cause for the positional switch in the C-CN bond formation method that results in (C-2')-cyanated 2-aryl-2H-indazoles 3a-j, (C-2')-cyanated 1-aryl-1H-indazoles 4a-j [distal], or C-3 cyanated 2-aryl-2H-indazoles 5a-i [proximal] products in good to excellent yields and showed various functional group tolerance. The cyanide (CN-) ion surrogate was generated via the unification of dimethylformamide and ammonium iodide (NH4I). The utilization of molecular oxygen (aerobic oxidative strategy) as a clean and safe oxidant is liable for generous value addition. The further pertinence of the developed protocol has been demonstrated by transforming the synthesized cyanated product into numerous other functional groups, which will, undoubtedly, accomplish utilization in the synthetic area of biologically important compounds and medicinal chemistry.
Collapse
Affiliation(s)
- Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.,Laboratory of Bioactive Heterocycles and Catalysis, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
8
|
Laru S, Bhattacharjee S, Hajra A. Visible-light-induced Mn(0)-catalyzed direct C-3 mono-, di- and perfluoroalkylation reactions of 2 H-indazoles. Chem Commun (Camb) 2022; 58:13604-13607. [PMID: 36398865 DOI: 10.1039/d2cc05021h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A general and efficient method for visible-light-driven fluoroalkylation, such as difluoromethylphosphonation, difluoroacetamidation, monofluoromethylation, difluoromethylation, and perfluoroalkyalation, of 2H-indazoles using an inexpensive Mn2(CO)10 photocatalyst has been developed. The present methodology affords a new series of C-3 fluoroalkylated 2H-indazole derivatives with wide functional group tolerance in good to excellent yields. Difluoromethylenated indiazoles are also prepared from difluoroester derivatives. Our mechanistic investigations support a radical pathway for the reaction.
Collapse
Affiliation(s)
- Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
9
|
Recent Advances in the Use of Dimethyl Sulfoxide as a Synthon in Organic Chemistry. Top Curr Chem (Cham) 2022; 380:55. [DOI: 10.1007/s41061-022-00411-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/06/2022] [Indexed: 11/27/2022]
|
10
|
Hosseini S, Janusz JN, Tanwar M, Pendergast AD, Neurock M, White HS. Oxidation by Reduction: Efficient and Selective Oxidation of Alcohols by the Electrocatalytic Reduction of Peroxydisulfate. J Am Chem Soc 2022; 144:21103-21115. [DOI: 10.1021/jacs.2c07305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Seyyedamirhossein Hosseini
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah84112, United States
| | - Jordyn N. Janusz
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah84112, United States
| | - Mayank Tanwar
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Andrew D. Pendergast
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah84112, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota55455, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota55455, United States
| | - Henry S. White
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah84112, United States
| |
Collapse
|
11
|
Yang Z, Yu JT, Pan C. Recent advances in C-H functionalization of 2 H-indazoles. Org Biomol Chem 2022; 20:7746-7764. [PMID: 36178474 DOI: 10.1039/d2ob01463g] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2H-Indazoles are one class of the most important nitrogen-containing heterocyclic compounds. The 2H-indazole motif is widely present in bioactive natural products and drug molecules that exhibit distinctive bioactivities. Therefore, much attention has been paid to access diverse 2H-indazole derivatives. Among them, the late-stage functionalization of 2H-indazoles via C-H activation is recognized as an efficient approach for increasing the complexity and diversity of 2H-indazole derivatives. In this review, we summarized recent achievements in the late-stage functionalization of 2H-indazoles, including the C3-functionalization of 2H-indazoles through transition metal-catalyzed C-H activation or a radical pathway, transition metal-catalyzed ortho C2'-H functionalization of 2H-indazoles and remote C-H functionalization at the benzene ring in 2H-indazoles.
Collapse
Affiliation(s)
- Zixian Yang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Jin-Tao Yu
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Changduo Pan
- School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou 213001, P. R. China.
| |
Collapse
|
12
|
Wu J, Yu X, Zhong L, Jin K, Zhao G, Zhu J, Shi H, Wei Y. Dimethyl Sulfoxide as Methyl Source for the Synthesis of Quinazolinones under Metal‐Free Conditions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Xiaoxiao Yu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Liangchen Zhong
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Kejun Jin
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Guoxu Zhao
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Jianye Zhu
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Haowen Shi
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| | - Yuanyuan Wei
- Anhui Science and Technology University College of Chemistry and Materials Engineering CHINA
| |
Collapse
|
13
|
DMSO as C1 source under metal‐and oxidant‐free conditions: NH4SCN mediated synthesis of quinazolinone and dihydroquinazolin‐4(1H)‐one derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Guo S, Li Y, Fan W, Liu Z, Huang D. Copper(II)-Catalyzed Selective CAr-H Bond Formylation: Synthesis of Dialdehyde Aniline. Front Chem 2022; 10:891858. [PMID: 35685349 PMCID: PMC9171048 DOI: 10.3389/fchem.2022.891858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
A simple and efficient method for the synthesis of dialdehyde aniline in good yields (up to 83%) is explored using Cu(OTf)2 as the catalyst, Selectfluor as the radical initiator, and DMSO as both the carbon and oxygen sources. Experimental studies indicate that the reaction is achieved by the formylation of two CAr-H bonds, first at the para-position and then at the ortho-position. A possible mechanism is proposed, including the thermal homolysis of Selectfluor, the Cu(II)-facilitated formylation of the CAr-H bonds, and the hydrolysis of the amide under alkaline conditions in air atmosphere.
Collapse
Affiliation(s)
- Shiwei Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- College of Materials Science and Opto Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiqi Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- *Correspondence: Deguang Huang,
| |
Collapse
|
15
|
Ghosh D, Ghosh S, Ghosh A, Pyne P, Majumder S, Hajra A. Visible light-induced functionalization of indazole and pyrazole: a recent update. Chem Commun (Camb) 2022; 58:4435-4455. [PMID: 35294515 DOI: 10.1039/d2cc00002d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Indazole and pyrazole are renowned as a prodigious class of heterocycles having versatile uses in medicinal as well as industrial chemistry. Considering sustainable approaches, recently, photocatalysis has become an indispensable tool in organic chemistry due to its application for the activation of small molecules and the use of a clean energy source. In this review, we have highlighted the use of metal-based photocatalysts, organic photoredox catalysts, energy transfer photocatalysts and electron-donor-acceptor complexes in the functionalization of indazole and pyrazole. This perspective is arranged based on the types of functionalization reactions on indazole and pyrazole. A detailed discussion regarding the reaction mechanism of each reaction is given to provide a comprehensive guide to the reader. Finally, a summary of existing challenges and the future outlook towards the development of efficient photocatalytic methods for functionalization of these heterocycles is also presented.
Collapse
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore 560027, Karnataka, India
| | - Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Souvik Majumder
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India.
| |
Collapse
|
16
|
Zhang H, Wang W, Wang B, Tan H, Jiao N, Song S. Electrophilic amidomethylation of arenes with DMSO/MeCN reagents. Org Chem Front 2022. [DOI: 10.1039/d2qo00181k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient electrophilic amidomethylation of aromatics was described with DMSO as the CH2 source and nitrile as the nitrogen source.
Collapse
Affiliation(s)
- Hongliang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Weijin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Bingding Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Hui Tan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Song Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Jiangsu 210023, China
| |
Collapse
|
17
|
Zhang W, Li C, Wang B, Gao H, Li H. Rh(III)-Catalyzed Annulation of Azobenzenes with Vinylene Carbonate. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Bhattacharjee S, Laru S, Hajra A. Remote difunctionalization of 2 H-indazoles using Koser's reagents. Chem Commun (Camb) 2021; 58:981-984. [PMID: 34937080 DOI: 10.1039/d1cc06129a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new, efficient, and metal-free protocol has been developed for remote difunctionalization of unreactive C-H bonds at the benzene core of 2H-indazole by employing Koser's reagents, which act as both sulfonyloxylating and iodinating agents under ambient air. The present methodology represents facile access to C-4-sulfonyloxylated and C-7-iodinated 2H-indazole derivatives with high regioselectivity, wide functional group tolerance, and broad substrate scope in good to excellent yields. The formed 4,7 disubstituted 2H-indazoles are the precursors of various C-4,7-functionalized 2H-indazoles through simple transformations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
19
|
Saritha R, Annes SB, Perumal K, Veerappan A, Ramesh S. Oxidative Coupling of Phenylhydrazine Hydrochloride With 2
H
‐Indazole Derivatives Using Visible Light Activation of Carbazole Based Organophotocatalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Rajendhiran Saritha
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Sesuraj Babiola Annes
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Karuppaiah Perumal
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Anbazhagan Veerappan
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| | - Subburethinam Ramesh
- Department of Chemistry School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 Tamil Nadu India
| |
Collapse
|
20
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|