1
|
Shichijo K, Tanaka M, Kametani Y, Shiota Y, Fujitsuka M, Shimakoshi H. B 12-Catalyzed Carbonylation of Carbon Tetrahalides: Using a Broad Range of Visible Light to Access Diverse Carbonyl Compounds. Chemistry 2025; 31:e202403663. [PMID: 39484682 PMCID: PMC11724252 DOI: 10.1002/chem.202403663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/03/2024]
Abstract
Visible-light-driven organic synthesis is a green and sustainable method for producing fine chemicals and is highly desirable at both laboratory and industrial scales. In this study, we developed a broad-range (including the red region) visible-light-driven carbonylation of CCl4, CBr4, and CBr3F with nucleophiles, such as amines and alcohols, using a B12-Mg2+/TiO2 hybrid catalyst. Carbonyl molecules such as ureas, carbamates, carbonate esters, and carbamoyl fluorides were synthesized with high selectivity and efficiency under mild conditions. Diffuse reflectance UV-vis spectroscopy, femtosecond time-resolved diffuse reflectance spectroscopy, and density functional theory calculations revealed the reaction mechanism is a combination of SN2 and single-electron transfer. This is a rare example of a low-energy, red-light-driven photocatalysis, which has been a highly desired organic reaction in recent years. We believe that this study provides a general platform to access diverse carbonyl molecules and could promote photocatalytic carbonylation reactions on a pilot scale.
Collapse
Affiliation(s)
- Keita Shichijo
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Miho Tanaka
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Yohei Kametani
- Institute for Materials Chemistry and EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| | - Mamoru Fujitsuka
- SANKEN (The Institute of Scientific and Industrial Research)Osaka University,Mihogaoka 8–1Ibaraki, Osaka567-0047Japan
| | - Hisashi Shimakoshi
- Department of Chemistry and BiochemistryGraduate School of EngineeringKyushu UniversityNishi-ku, MotookaFukuoka 744, 819–0395Japan
| |
Collapse
|
2
|
Higashimura I, Shele M, Akamatsu T, Ohmura R, Liang F, Okazoe T, Tsuda A. Photo-on-Demand In Situ One-Pot Synthesis of Carbonate Esters from Tetrachloroethylene. J Org Chem 2024; 89:1864-1872. [PMID: 38198222 DOI: 10.1021/acs.joc.3c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The present study reports a novel one-pot synthesis of carbonate esters with photo-oxidized tetrachloroethylene (TCE). Acyclic and cyclic alkyl carbonate esters could be synthesized through base-promoted condensation reactions of alcohols with the photo-oxidized TCE that was prepared by irradiation with UV-C or visible light under O2 or O2/Cl2 (∼4%) bubbling, respectively. Cyclic carbonate esters could also be synthesized from a solution of TCE and the ethylene glycol derivative by irradiation of UV-C light under O2 bubbling. With respect to the reaction mechanism, the photochemical oxidation of TCE mainly provides the highly toxic and corrosive trichloroacetyl chloride (TCAC), which then reacts in situ with the alcohol to give the corresponding trichloroacetic acid ester (TCAE). The subsequent intermolecular or intramolecular base-catalyzed condensation reaction of TCAE with or without the addition of alcohol leads to elimination of CHCl3 in the corresponding carbonate ester. The present reactions enable the in situ one-pot synthesis of a variety of alkyl carbonate esters under mild conditions without the direct handling of TCAC. This is beneficial in terms of safety, cost, and reduced environmental impact.
Collapse
Affiliation(s)
- Ikkei Higashimura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Muge Shele
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshiki Akamatsu
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Ryota Ohmura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Fengying Liang
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
3
|
Tsuda A, Ozawa N, Muranaka R, Kuwahara T, Matsune A, Liang F. Photo-on-Demand In Situ Phosgenation Reactions That Cross Three Phases of a Heterogeneous Solution of Chloroform and Aqueous NaOH. ACS OMEGA 2023; 8:27802-27810. [PMID: 37546672 PMCID: PMC10398853 DOI: 10.1021/acsomega.3c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
Here, we report a novel photo-on-demand in situ phosgenation reaction that crosses three phases of a heterogeneous solution of chloroform (CHCl3) and aqueous NaOH containing an aryl alcohol or amine. This reaction system enables the safe, convenient, and inexpensive synthesis of carbonate esters, polycarbonates, and N-substituted ureas from aryl alcohols, aryl diols, and primary/secondary amines, respectively, on a practical scale and with good yield. The photochemical oxidation of CHCl3 to phosgene (COCl2) occurs upon irradiation with UV light from a low-pressure mercury lamp of both the gas and liquid phases of the reaction system under O2 bubbling of the vigorously stirred sample solution. The following reaction mechanisms are suggested: The aryl alcohol reacts in situ with the generated COCl2 at the interfaces of the organic/aqueous phases and aqueous/gas phases, in competition with the decomposition of COCl2 due to hydrolysis. Nucleophilicity and hydrophilicity are enhanced by the formation of aryl alkoxide ion through the reaction with NaOH, whereas the reaction of amine proceeds through neutralization of the generated HCl by the aqueous NaOH.
Collapse
|
4
|
Akamatsu T, Shele M, Matsune A, Kashiki Y, Liang F, Okazoe T, Tsuda A. Photo-on-Demand In Situ Synthesis of N-Substituted Trichloroacetamides with Tetrachloroethylene and Their Conversions to Ureas, Carbamates, and Polyurethanes. ACS OMEGA 2023; 8:2669-2684. [PMID: 36687089 PMCID: PMC9851034 DOI: 10.1021/acsomega.2c07233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
N-substituted trichloroacetamides (NTCAs), which serve as blocked isocyanates, were synthesized in ∼97% yields by in situ photo-on-demand trichloroacetylation of amines with tetrachloroethylene (TCE). The reactions were performed by photo-irradiation of TCE solutions containing an amine under O2 bubbling over 70 °C with a low-pressure mercury lamp. TCE underwent photochemical oxidation to afford trichloroacetyl chloride having high toxicity and corrosivity, which then reacts in situ with the amine to afford NTCA. Compared with conventional NTCA synthesis with hexachloroacetone, the present reaction has the advantage of being widely applicable to a variety of amines, even those with low nucleophilicity such as amides, fluorinated amines, and amine HCl salts. NTCAs could be converted to the corresponding N-substituted ureas and carbamates through base-catalyzed condensation with amines and alcohols, respectively, with the elimination of CHCl3. The reaction may proceed by the initial formation of isocyanate and its subsequent addition reaction with the amine or alcohol. This photochemical reaction also enables the synthesis of fluorinated NTCAs, which accelerate the reactions, and realizes the synthesis of novel fluorinated chemicals including polyurethanes.
Collapse
Affiliation(s)
- Toshiki Akamatsu
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| | - Muge Shele
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| | - Ayako Matsune
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| | - Yoshiyuki Kashiki
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| | - Fengying Liang
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| | - Takashi Okazoe
- Materials
Integration Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa230-0045, Japan
| | - Akihiko Tsuda
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1
Rokkodai-cho, Nada-ku, Kobe657-8501, Japan
| |
Collapse
|
5
|
Liu Y, Okada I, Tsuda A. Flow Photo-On-Demand Phosgenation Reactions with Chloroform. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Yue Liu
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Itsuumi Okada
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
6
|
Sugimoto T, Kuwahara T, Liang F, Wang H, Tsuda A. Photo-On-Demand Synthesis of α-Amino Acid N-Carboxyanhydrides with Chloroform. ACS OMEGA 2022; 7:39250-39257. [PMID: 36340075 PMCID: PMC9631898 DOI: 10.1021/acsomega.2c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Amino acid N-carboxyanhydrides (NCAs) are conventionally synthesized from α-amino acids and phosgene. The present study reports in situ photo-on-demand phosgenation reactions of amino acids with CHCl3 for synthesizing NCAs. A series of NCAs were obtained on a gram scale upon photo-irradiation of a mixture solution of CHCl3 and CH3CN containing an amino acid at 60-70 °C under O2 bubbling. This method presents a safe and convenient reaction controlled by light without special apparatuses and reagents.
Collapse
|
7
|
Hatsumura S, Hashimoto Y, Hosokawa S, Nagao A, Eda K, Harada H, Ishitsuka K, Okazoe T, Tsuda A. Reactivity and Product Selectivity of Fluoroalkyl Carbonates in Substitution Reactions with Primary Alcohols and Amines. J Org Chem 2022; 87:11572-11582. [PMID: 35981240 DOI: 10.1021/acs.joc.2c01180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study reports a systematic investigation of the substitution reactions of a series of symmetric and unsymmetric fluoroalkyl carbonates with primary alcohols or amines. The reactivity of the haloalkyl carbonate depends mainly on the electrophilicity and steric crowdedness of the carbonyl group and the leaving ability of the haloalkyl alcohols. Diethyl carbonate as a reference substrate showed no reaction with the alcohol or amine. However, bis(2,2,2-trifluoroethyl) carbonate [(F3-EtO)2CO] having electron-withdrawing trifluoroethyl groups enabled substitution reactions, with relatively higher reactivities to those for diphenyl carbonate [(PhO)2CO]. Furthermore, (F6-iPrO)2CO, bearing two sets of hexafluoroisopropyl groups, showed dramatic acceleration of the reactions, in which the observed reactivities were similar to those for bis(perfluorophenyl) carbonate [(F5-PhO)2CO]. The electrophilicity of the carbonyl group and the leaving ability of the alcohols in the series of haloalkyl carbonates were found to be correlated with the wavenumbers of their carbonyl groups in IR spectra and pKa for the eliminated alcohols, respectively. Since the eliminated fluoroalkyl alcohols exhibit weak affinity with the organic products and have lower boiling points owing to a characteristic property of the fluoroalkyl group, they could be readily removed from the product by simple evaporation below 100 °C with or without reduced pressure.
Collapse
Affiliation(s)
- Shuto Hatsumura
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuka Hashimoto
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Sasuga Hosokawa
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Akihiro Nagao
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Hirofumi Harada
- Innovative Technology Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Kei Ishitsuka
- Innovative Technology Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Takashi Okazoe
- Materials Integration Laboratories, AGC Inc, 1-1 Suehiro-cho Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T. Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor. Science 2022; 377:756-759. [PMID: 35951682 DOI: 10.1126/science.abq0516] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Fluorinated analogs of polyhedral hydrocarbons have been predicted to localize an electron within their cages upon reduction. Here, we report the synthesis and characterization of perfluorocubane, a stable polyhedral fluorocarbon. The key to the successful synthesis was the efficient introduction of multiple fluorine atoms to cubane by liquid-phase reaction with fluorine gas. The solid-state structure of perfluorocubane was confirmed using x-ray crystallography, and its electron-accepting character was corroborated electrochemically and spectroscopically. The radical anion of perfluorocubane was examined by matrix-isolation electron spin resonance spectroscopy, which revealed that the unpaired electron accepted by perfluorocubane is located predominantly inside the cage.
Collapse
Affiliation(s)
- Masafumi Sugiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Midori Akiyama
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Yonezawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenji Komaguchi
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8527, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takashi Okazoe
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan.,AGC Inc., Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
9
|
Suri G, Liang F, Hu M, Wang M, Bu R, Zhang X, Wang H, Dong W, Eerdun C, Tsuda A. Direct Syntheses of Diphenylmethanol Derivatives from Substituted Benzenes and CHCl 3 through Friedel-Crafts Alkylation and Post-Synthetic Hydrolysis or Alcoholysis Catalyzed by Alumina. ChemistryOpen 2022; 11:e202200042. [PMID: 35585035 PMCID: PMC9117155 DOI: 10.1002/open.202200042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/22/2022] [Indexed: 11/14/2022] Open
Abstract
The present study reports an innovative finding that alumina containing water or primary alcohol catalyzes the hydrolysis or alcoholysis, respectively, of the product formed through AlCl3 -mediated Friedel-Crafts alkylation of methyl-substituted benzenes and CHCl3 . The former and later reactions mainly provided hydroxy- and alkoxy-substituted diarylmethanes, respectively, while the reference reactions without alumina provided bisarylchloromethane. This method enables the selective syntheses of diphenylmethanol derivatives with very simple procedures, without expensive reagents and apparatuses. Furthermore, the alumina used in the reaction could be recycled by washing with water and subsequent drying. From the viewpoint of material recycling, this function is very important for the development of sustainable chemical reactions.
Collapse
Affiliation(s)
- Guga Suri
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Fengying Liang
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Mixia Hu
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Meiling Wang
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Ren Bu
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Xiaoying Zhang
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Hui Wang
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Wenyan Dong
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Chaolu Eerdun
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
| | - Akihiko Tsuda
- Department of Pharmaceutical SciencesInner Mongolia Medical UniversityJinshan Economic & Technology Development DistrictHohhot, InnerMongolia010110P. R. China
- Department of ChemistryGraduate School of ScienceKobe University1-1 Rokkodai-cho, Nada-kuKobe657-8501Japan
| |
Collapse
|
10
|
Suzuki Y, Liang F, Okazoe T, Okamoto H, Takeuchi Y, Tsuda A. Photo-on-Demand Conversion of Chloroform to Phosgene Triggered by Cl 2 upon Irradiation with Visible Light: Syntheses of Chloroformates, Carbonate Esters, and Isocyanates. CHEM LETT 2022. [DOI: 10.1246/cl.220081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuto Suzuki
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501
| | - Fengying Liang
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501
| | - Takashi Okazoe
- Yokohama Technical Center, AGC Inc., Suehiro-cho 1-1 Tsurumi-ku, Yokohama City, Kanagawa 230-0045
| | - Hidekazu Okamoto
- Yokohama Technical Center, AGC Inc., Suehiro-cho 1-1 Tsurumi-ku, Yokohama City, Kanagawa 230-0045
| | - Yu Takeuchi
- Yokohama Technical Center, AGC Inc., Suehiro-cho 1-1 Tsurumi-ku, Yokohama City, Kanagawa 230-0045
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501
| |
Collapse
|
11
|
Muranaka R, Liu Y, Okada I, Okazoe T, Tsuda A. Photo-on-Demand Phosgenation Reactions with Chloroform for Selective Syntheses of N-Substituted Ureas and Isocyanates. ACS OMEGA 2022; 7:5584-5594. [PMID: 35187373 PMCID: PMC8851444 DOI: 10.1021/acsomega.1c07132] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/19/2022] [Indexed: 05/16/2023]
Abstract
Two new reaction processes involving the in situ oxidative photochemical conversion of CHCl3 to COCl2 allowed selective syntheses of N-substituted ureas and isocyanates from amines. (I) A CHCl3 solution containing an amine and an organic base under O2 bubbling provided the urea derivative under exposure to UV light generated from a low-pressure mercury lamp at 20-40 °C. (II) A two-step reaction involving the oxidative photodecomposition of CHCl3 at lower temperatures and subsequent sequential injections of an amine and organic base into the sample solution provided the isocyanate in high yield. The reaction processes of (I) and (II) capitalize on the solution conditions of [COCl2] < [amine] and [COCl2] > [amine], respectively, to result in 1:2 and 1:1 reactions. In general, isocyanates, especially aromatic and haloalkyl ones, readily undergo hydrolysis in the presence of an organic base. However, with the advantage of synthesizing the isocyanates in CHCl3 solvent, direct addition of monoalcohols and diols to the as-prepared sample solution containing the diisocyanate allowed the one-pot syntheses of biscarbamates and polyurethanes, respectively. The reactions developed in this study are simple, safe, and inexpensive methods of synthesizing N-substituted ureas and isocyanates, and derivatives of isocyanates such as carbamates and polyurethanes. The present new methods can replace current synthetic methods using COCl2 in both academia and industry.
Collapse
Affiliation(s)
- Ryo Muranaka
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yue Liu
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Itsuumi Okada
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takashi Okazoe
- Materials
Integration Laboratories, AGC Inc., 1-1 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Akihiko Tsuda
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| |
Collapse
|