1
|
Hu H, Yang B, Liu Y, Xu W, Xia C, Xu G, Wu M. Photoredox Catalytic Defluoroalkylation of gem-Difluoroalkenes with Secondary N-Alkylanilines via C-F/C-H Coupling. Org Lett 2025; 27:386-390. [PMID: 39711131 DOI: 10.1021/acs.orglett.4c04432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
To provide fluorinated allylamines, a visible-light photocatalytic C-F/C-H coupling of easily accessible gem-difluoroalkenes and secondary N-alkylanilines was described. The protocol proceeded under mild conditions, with excellent functional group compatibility and a broad scope including complex natural product derivatives, thus providing a green method for the preparation of high-value functionalized monofluoroalkenes. Mechanistic studies elucidated a photoredox catalyzed radical-radical coupling pathway.
Collapse
Affiliation(s)
- Haiyang Hu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Baokai Yang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Yongcan Liu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Wengang Xu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Congjian Xia
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Guoqiang Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, 266101 Qingdao, P. R. China
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| |
Collapse
|
2
|
Karuo Y, Hirata K, Tarui A, Sato K, Kawai K, Omote M. Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers. Beilstein J Org Chem 2024; 20:2691-2703. [PMID: 39469295 PMCID: PMC11514441 DOI: 10.3762/bjoc.20.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
In this study, we develop the synthesis methods of fluoroalkenes and fluoroenynes via Suzuki-Miyaura and Sonogashira cross-coupling reactions using novel multihalogenated fluorovinyl ethers, which are easily prepared from the reaction between phenols and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane). These reactions make use of the unique structure of multihalogenated fluorovinyl ethers, which contains a reactive bromine atom, to afford a series of fluoroalkenes and fluoroenynes in moderate to high yields.
Collapse
Affiliation(s)
- Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keita Hirata
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
3
|
Wang Z, Liu C, Huang J, Huang L, Feng H. Palladium-Catalyzed Regioselective Monofluoroallylation of Indoles with gem-Difluorocyclopropanes. Org Lett 2024; 26:6905-6909. [PMID: 39088798 DOI: 10.1021/acs.orglett.4c02554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
We present a palladium-catalyzed ring-opening reaction that induces indoles to cross-couple with gem-difluorocyclopropanes. The reaction proceeds through a domino process of C-C bond activation and C-F bond elimination, followed by C-C(sp2) coupling to produce various 2-fluoroallylindoles. This method is characterized by its high functional group tolerance, good yields and high regioselectivity, under base-free conditions. The synthetic utility of the products is illustrated by the functionalization of the NH and C2 positions of the indole scaffold.
Collapse
Affiliation(s)
- Zhenjie Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chuang Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Junhai Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| |
Collapse
|
4
|
Xia C, Hu H, Xu W, Yang B, Shao Q, Wu M. Defluoroalkylation of gem-Difluoroalkenes with Alcohols via C-F/C-H Coupling. Org Lett 2024; 26:310-314. [PMID: 38134354 DOI: 10.1021/acs.orglett.3c03982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A feasible and effective method to synthesize α-fluoroalkenyl alcohols was reported. With the cooperation of photoredox and hydrogen atom transfer (HAT) processes, defluoroalkylations of gem-difluoroalkenes occurred smoothly with alcohols under visible-light irradiation. Notably, the protocols feature broad scopes, mild conditions, and validity for the late-stage functionalization of bioactive molecule derivatives. Mechanistic studies suggested that the reaction occurred through the radical coupling of the alkyl radical and the fluoroalkenyl radical.
Collapse
Affiliation(s)
- Congjian Xia
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Haiyang Hu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Wengang Xu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Baokai Yang
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Qi Shao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| | - Mingbo Wu
- College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), 266580 Qingdao, P. R. China
| |
Collapse
|
5
|
Li X, Li Y, Wang Z, Shan W, Liu R, Shi C, Qin H, Yuan L, Li X, Shi D. Nickel-Catalyzed Stereoselective Cascade C–F Functionalizations of gem-Difluoroalkenes. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Yuxiu Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, Guangdong, P. R. China
| | - Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Wenlong Shan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Cong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Hongyun Qin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Leifeng Yuan
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, Shandong, P. R. China
- Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, 168 Weihai Road, Qingdao 266237, Shandong, P. R. China
| |
Collapse
|
6
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
7
|
Diverse reactivity of the gem-difluorovinyl iodonium salt for direct incorporation of the difluoroethylene group into N- and O-nucleophiles. Commun Chem 2022; 5:167. [PMID: 36697903 PMCID: PMC9814539 DOI: 10.1038/s42004-022-00772-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
The synthesis of gem-difluoroethylene compounds remains a difficult task in organic synthesis. Here, the direct difluoroethylation reactions of N- and O-nucleophiles including amides and acids were realized with a hypervalent iodine reagent: gem-difluorovinyl iodonium salt (DFVI). The reactions were accomplished via a neighbouring group rearrangement. The gem-difluorovinyl iodonium salt was found to display diverse reactivity due to its unique electronic effect and was applied to the incorporation of difluoroethylene group, including difluorovinylation of carboxylic acids, difluorovinylation and 1,3-cyclic fluorovinylation of amides and 1,1-cyclic difluoroethylation of amines.
Collapse
|
8
|
Xie J, Wu L, Lu P, Wang Y. Olefination of 3-Diazoindolin-2-imines with Hydrazones: An Approach toward Stereoselective Synthesis of ( E)-3-Arylideneindolin-2-imines. J Org Chem 2022; 87:10664-10672. [PMID: 35916772 DOI: 10.1021/acs.joc.2c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stereoselective synthesis of (E)-3-arylideneindolin-2-imines from 3-diazoindolin-2-imines and hydrazones was achieved using copper bromide as the catalyst. The olefination reaction proceeded via copper-catalyzed aerobic oxidation of hydrazones to diazo compounds and copper-catalyzed cross coupling of two different diazo components in a tandem manner.
Collapse
Affiliation(s)
- Jianwei Xie
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Li Wu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
9
|
Nambo M, Ghosh K, Yim JCH, Tahara Y, Inai N, Yanai T, Crudden CM. Desulfonylative Coupling of Alkylsulfones with gem-Difluoroalkenes by Visible-Light Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Koushik Ghosh
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Jacky C.-H. Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Yasuyo Tahara
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Naoto Inai
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Takeshi Yanai
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Cathleen M. Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8602, Japan
- Department of Chemistry, Queen’s University, Chernoff Hall, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
10
|
Tu Y, Shi P, Bolm C. Visible-Light-Mediated α-Ketoacylations of NH-Sulfoximines with gem-Difluoroalkenes. Org Lett 2022; 24:907-911. [PMID: 35040650 DOI: 10.1021/acs.orglett.1c04254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A photochemical approach for the preparation of α-keto-N-acyl sulfoximines from NH sulfoximines and gem-difluoroalkenes has been developed. In the presence of NBS, the reactions proceed in air without the need of a photocatalyst or additional oxidant. Results of mechanistic studies suggest that the two oxygens in the products stem from water and dioxygen.
Collapse
Affiliation(s)
- Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
11
|
Lu XY, Chen XK, Gao MT, Sun XM, Jiang RC, Wang JC, Yu LJ, Ge MY, Wei ZH, Liu Z. Copper-catalyzed direct monofluoroalkenylation of C(sp 3)–H bonds via decarboxylation of α-fluoroacrylic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00977c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a protocol for the copper-catalyzed direct monofluoroalkenylation of C(sp3)–H bonds is reported.
Collapse
Affiliation(s)
- Xiao-Yu Lu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
- School of Chemistry and Chemical Engineering, AnHui University, He Fei, 230601, China
| | - Xing-Ke Chen
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Meng-Ting Gao
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Xiao-Mei Sun
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Run-Chuang Jiang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Jun-Chao Wang
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Li-Juan Yu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Meng-Yuan Ge
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Zheng-Huan Wei
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| | - Zi Liu
- School of Materials and Chemical Engineering, ChuZhou University, Chu Zhou, 239000, China
| |
Collapse
|