1
|
Shin D, Kim S, Lee DH, Han SJ. Synthetic Strategies toward Ortho-3-propanoate Substituted Aryl Phosphonates by Three-Component Coupling Reactions of Arynes, Phosphites, and Acrylates. J Org Chem 2024. [PMID: 38803278 DOI: 10.1021/acs.joc.4c00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mild, metal-free, and operationally simple three-component coupling reactions involving arynes, phosphites, and acrylates have been achieved. The reaction proceeded well with α- or β-substituted acrylates. Additionally, various functional groups were tolerated under these reaction conditions, resulting in diverse ortho-3-propanoate-substituted aryl phosphonates. Moreover, the reaction can be used to synthesize a range of organophosphorus compounds present in natural products, materials, and biologically active compounds.
Collapse
Affiliation(s)
- Donghwa Shin
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Seoul 04107, Republic of Korea
| | - Soomin Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Seoul 04107, Republic of Korea
| | - Seo-Jung Han
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Republic of Korea
| |
Collapse
|
2
|
Sephton T, Charitou A, Trujillo C, Large JM, Butterworth S, Greaney MF. Aryne-Enabled C-N Arylation of Anilines. Angew Chem Int Ed Engl 2023; 62:e202310583. [PMID: 37850515 PMCID: PMC10952162 DOI: 10.1002/anie.202310583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/19/2023]
Abstract
Anilines are potentially high-value arylating agents, but are limited by the low reactivity of the strong C-N bond. We show that the reactive intermediate benzyne can be used to both activate anilines, and set-up an aryl transfer reaction in a single step. The reaction does not require any transition metal catalysts or stoichiometric organometallics, and establishes a metal-free route to valuable biaryl products by functionalizing the aniline C-N bond.
Collapse
Affiliation(s)
- Thomas Sephton
- School of ChemistryUniversity of ManchesterManchesterM13 9PLUK
| | | | | | - Jonathan M. Large
- LifeArc, Accelerator BuildingOpen Innovation CampusStevenageSG1 2FXUK
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences, Manchester Academic Health Sciences CentreUniversity of ManchesterManchesterM13 9PLUK
| | | |
Collapse
|
3
|
Ito M, Takishima Y, Ishikawa R, Kamimura M, Watanabe H, Konishi T, Higuchi K, Sugiyama S. Development of 3-triazenylaryne and its application to iterative aryne reactions via o-triazenylarylboronic acids. Chem Commun (Camb) 2023; 59:14249-14252. [PMID: 37947053 DOI: 10.1039/d3cc04878k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Herein, a novel aryne species, 3-triazenylaryne, was developed and its regioselectivity was revealed. Based on the regioselectivity, various alkyne moieties were introduced by iodoalkynylation, and further derivatization to o-triazenylarylboronic acids as 3-alkynylaryne precursors was enabled. Therefore, 3-triazenylaryne was developed as a divergent platform for the generation of various 3-alkynylarynes.
Collapse
Affiliation(s)
- Motoki Ito
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Yuta Takishima
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Rinto Ishikawa
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Mao Kamimura
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Hana Watanabe
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Takehiro Konishi
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Kazuhiro Higuchi
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| | - Shigeo Sugiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio Kiyose, Tokyo 204-8588, Japan.
| |
Collapse
|
4
|
Taguchi J, Okuyama T, Tomita S, Niwa T, Hosoya T. Synthesis of Multisubstituted Aromatics via 3-Triazenylarynes. Org Lett 2023; 25:7030-7034. [PMID: 37712445 DOI: 10.1021/acs.orglett.3c02615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
An efficient method for generating 3-triazenylarynes from ortho-iodoaryl triflate-type precursors was developed. The generated arynes reacted with various arynophiles with high regioselectivity because of the triazenyl group. The 3-triazenylaryne precursors functioned as useful intermediates of diverse multisubstituted aromatic compounds through the transformation of the remaining triazenyl group of aryne adducts and triazenyl group-directed ortho-C-H functionalization.
Collapse
Affiliation(s)
- Jumpei Taguchi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takumi Okuyama
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satomi Tomita
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takashi Niwa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
5
|
Haas TM, Wiesler S, Dürr‐Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. The Aryne Phosphate Reaction**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thomas M. Haas
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Stefan Wiesler
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Tobias Dürr‐Mayer
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Alexander Ripp
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| | - Paraskevi Fouka
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Danye Qiu
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry Albert-Ludwigs University Freiburg Albertstraße 21 79102 Freiburg im Breisgau Germany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS) 79110 Freiburg Germany
| |
Collapse
|
6
|
Haas TM, Wiesler S, Dürr‐Mayer T, Ripp A, Fouka P, Qiu D, Jessen HJ. The Aryne Phosphate Reaction. Angew Chem Int Ed Engl 2022; 61:e202113231. [PMID: 34727582 PMCID: PMC9299019 DOI: 10.1002/anie.202113231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Indexed: 11/10/2022]
Abstract
Condensed phosphates are a critically important class of molecules in biochemistry. Non-natural analogues are important for various applications, such as single-molecule real-time DNA sequencing. Often, such analogues contain more than three phosphate units in their oligophosphate chain. Consequently, investigations into phosphate reactivity enabling new ways of phosphate functionalization and oligophosphorylation are essential. Here, we scrutinize the potential of phosphates to act as arynophiles, paving the way for follow-up oligophosphorylation reactions. The aryne phosphate reaction is a powerful tool to-depending on the perspective-(oligo)phosphorylate arenes or arylate (oligo-cyclo)phosphates. Based on Kobayashi-type o-silylaryltriflates, the aryne phosphate reaction enables rapid entry into a broad spectrum of arylated products, like monophosphates, diphosphates, phosphodiesters and polyphosphates. The synthetic potential of these new transformations is demonstrated by efficient syntheses of nucleotide analogues and an unprecedented one-flask octaphosphorylation.
Collapse
Affiliation(s)
- Thomas M. Haas
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Stefan Wiesler
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Tobias Dürr‐Mayer
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Alexander Ripp
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| | - Paraskevi Fouka
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Danye Qiu
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
| | - Henning J. Jessen
- Institute of Organic ChemistryAlbert-Ludwigs University FreiburgAlbertstraße 2179102Freiburg im BreisgauGermany
- DFG Cluster of Excellence “Living, Adaptive and Energy-Autonomous Materials Systems” (livMatS)79110FreiburgGermany
| |
Collapse
|
7
|
Wang J, Li Z, You G, Xu L, Gao P, Rao B. Regioselective transformation of 3-phosphoryl benzyne intermediates to diverse phosphorus-substituted arenes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03638j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pre-functionalized benzyne precursors 5, 6 and 10 bearing a phosphoryl group were efficiently synthesized via a phospho-Fries rearrangement reaction on gram scales, and directly proceed various transformations to poly-substituted organophosphorus arenes in high regioselectivity.
Collapse
Affiliation(s)
- Jing Wang
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Zenghui Li
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Gaoqiang You
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, 832003, China
| | - Pin Gao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Bin Rao
- School of Chemistry, Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
8
|
Taguchi J, Kimura K, Igawa K, Tomooka K, Hosoya T. 3-Azidoarynes: Generation and Regioselective Reactions. CHEM LETT 2021. [DOI: 10.1246/cl.210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jumpei Taguchi
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kota Kimura
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Kazunobu Igawa
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Katsuhiko Tomooka
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|