1
|
Patel RI, Saxena B, Sharma A. Photoactivation of Thianthrenium Salts: An Electron-Donor-Acceptor (EDA)-Complex Approach. J Org Chem 2025; 90:6617-6643. [PMID: 40368878 DOI: 10.1021/acs.joc.5c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Thianthrenium salts have emerged as one of the most versatile reagents, gaining significant popularity within the synthetic community for their utility in the construction of C-C and C-X (X = N, O, S, P, halogens) bonds. The use of photoredox and transition metal catalysis with thianthrenium salts for C-C and C-heteroatom bond formation is well established. However, most of these methods require elevated temperatures, expensive catalysts, and ligands under stringent conditions for effective execution. In contrast, the photocatalysis- and transition-metal-free approaches for constructing C-C and C-X bonds using thianthrenium salt derivatives have become increasingly sought after. In this regard, electron-donor-acceptor (EDA)-complex reactions have emerged as a powerful strategy in organic synthesis, eliminating the need for photocatalysts under visible light irradiation. EDA-complex photochemistry exploits the electron-acceptor properties of thianthrenium salts, facilitating the rapid generation of radical intermediates via the C-S bond cleavage. These radical intermediates play a pivotal role in enabling a variety of valuable C-C and C-X formations. In this Perspective, we highlight significant advances in the EDA-complex-mediated reactions involving thianthrenium salts with mechanisms, substrate scope, and limitations for constructing C-C and C-heteroatom bonds. For the sake of brevity, the article is organized into five main sections: (1) Nitrogen-based donor reactions, (2) Oxygen-based donor reactions, (3) Sulfur-based donor reactions, (4) Phosphorus-based donor reactions, and (5) π-based donor reactions, with a focus on C-C, C-S, C-B and C-P bond formations.
Collapse
Affiliation(s)
- Roshan I Patel
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Barakha Saxena
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Anuj Sharma
- Green Organic Synthesis Laboratory, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
2
|
Sonavane SR, Kale TB, Bhatt GJ, Mhaske SB. Organophotoredox-Catalyzed Decarboxylative C-O/N/S Bond Formation: Access to Ampakine APIs and Quinazolinone Alkaloids. Org Lett 2025; 27:3871-3876. [PMID: 40193548 DOI: 10.1021/acs.orglett.5c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
This study describes a novel and general protocol featuring organophotoredox-catalyzed intramolecular decarboxylative construction of carbon-heteroatom (oxygen, nitrogen, and sulfur) bonds, enabling direct access to ampakine APIs (CX-614 and CX-554), quinazolinone alkaloids (deoxyvasicinone and mackinazolinone), and thiazinone scaffolds as well as their congeners with broad functional group tolerance and scalability. Mechanistic studies suggest a radical-polar crossover pathway via single-electron oxidation.
Collapse
Affiliation(s)
- Sameer R Sonavane
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Tushar B Kale
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Gaurang J Bhatt
- Academy of Scientific and Innovative Research, Ghaziabad 201002, India
| | - Santosh B Mhaske
- Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
3
|
Zhou Z, Zhang Y, Yu Z, Liu Y, Wang Z, Zhang Q, Wang L. Visible-Light-Mediated Synthesis of Anomeric S-Aryl Glycosides via Electron Donor-Acceptor Complex Using Thianthrenium Salts. Molecules 2025; 30:1315. [PMID: 40142087 PMCID: PMC11946794 DOI: 10.3390/molecules30061315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/05/2025] [Accepted: 03/12/2025] [Indexed: 03/28/2025] Open
Abstract
S-Aryl glycosides are not only popular glycosyl donors in carbohydrate chemistry but also serve as valuable tools in various biological studies, which has brought significant attention to their preparation. However, there remains a pressing need for greener synthesis methods in this area. In response, a mild, sustainable, and metal- and photocatalyst-free electron donor-acceptor (EDA)-mediated approach for synthesizing S-Aryl glycosides using 1-thiosugar and aryl thianthrenium salt was developed. Our strategy utilizes 1-thiosugar as the donor, overcoming the traditional reliance on electron-rich thiols, such as aryl or carbonyl thiols, typically required for forming EDA complexes.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, College of Chemistry and Materials, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
4
|
Liang L, Wang YH, Cui CX, Deng XS, Wang SL, Guo HM, Li Y, Niu HY, Mao R. NADH Analogues Enable Metal- and Light-Free Decarboxylative Functionalization. Angew Chem Int Ed Engl 2025; 64:e202415131. [PMID: 39584360 DOI: 10.1002/anie.202415131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Here we report a metal- and light-free decarboxylative functionalization approach enabled by reduced nicotinamide adenine dinucleotide (NADH) analogues. The efficient and operationally simple approach, conducted in 5 minutes from in situ preparation of aryliodine (III) dicarboxylates under open-air and ambient conditions, enables diverse bond formation and exhibits a broad substrate scope of over 70 examples. Late-stage functionalization of drug molecules and natural products further demonstrates the synthetic utility of this method. Combined experimental and computational studies elucidate the mechanistic pathway. These transformations streamline the synthesis of sp3 carbon-enriched compounds, adding a new dimension to classical decarboxylative reactions.
Collapse
Affiliation(s)
- Lei Liang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
- School of Chemistry and Chemical Engineering, Henan Normal University Jianshe Road, Xinxiang, Henan Province, 453003, China
| | - Yue-Hui Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Xiao-Shan Deng
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Song-Lin Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Hai-Ming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University Jianshe Road, Xinxiang, Henan Province, 453003, China
| | - Yingzi Li
- Institute of Chemical Research of Catalonia, Tarragona, 43007, Spain
| | - Hong-Ying Niu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology Hualan Avenue East Section, Xinxiang, Henan Province, 453007, China E-mails
| | - Runze Mao
- Division of Chemistry and Chemical Engineering, California Institute of Technology Pasadena, California, 91225, United States
- Institute of Biopharmaceutical and Health Engineering Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
5
|
Liu Z, Hu Y, Wang S, Ding Y, Zhang Z, Qiu YF, Liu Z, Lei J. Visible-light-driven catalyst-free C-S cross-coupling of thiol derivatives and aryl halides. Org Biomol Chem 2024; 22:8967-8972. [PMID: 39420589 DOI: 10.1039/d4ob01415d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A mild, scalable, and high-yielding visible-light-promoted C-S cross-coupling between alkyl thiol derivatives and (hetero)aryl halides without the need for metals, ligands, or photocatalysts is reported, offering advantages over traditional C-S bond forming strategies. The formation of an electron donor-acceptor (EDA) complex is supported by experimental and computational mechanistic studies, which undergoes visible-light-induced charge transfer to initiate C-S bond formation in the absence of a photoredox catalyst.
Collapse
Affiliation(s)
- Zhiqiang Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yansong Hu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Shutao Wang
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yating Ding
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Zhengze Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, China
| | - Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, 967 East Anning Road, Lanzhou 730070, P. R. China
| | - Zhao Liu
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| | - Junqiang Lei
- First Hospital of Lanzhou University, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
6
|
Zhu Y, Zhang Y, Zhao X, Lu K. Photochemical alkylation of quinoxalin-2(1 H)-ones with N, N, N', N'-tetraalkylethylenediamine. Org Biomol Chem 2024; 22:8951-8957. [PMID: 39405168 DOI: 10.1039/d4ob01494d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
A visible-light-induced C-3 alkylation of quinoxalin-2(1H)-ones with N,N,N',N'-tetraalkylethylenediamine was achieved without an external photocatalyst. The mechanism showed that quinoxalin-2(1H)-ones could act as photocatalysts. The accessibility of the reagents and the green and mild reaction conditions made this protocol an alternative method to access C-3 alkylated quinoxalin-2(1H)-ones.
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
7
|
Meher P, Parida SK, Mahapatra SK, Roy L, Murarka S. Overriding Cage Effect in Electron Donor-Acceptor Photoactivation of Diaryliodonium Reagents: Synthesis of Chalcogenides. Chemistry 2024; 30:e202402969. [PMID: 39183717 DOI: 10.1002/chem.202402969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 08/27/2024]
Abstract
In recent times, diaryliodonium reagents (DAIRs) have witnessed a resurgence as arylating reagents, especially under photoinduced conditions. However, reactions proceeding through electron donor-acceptor (EDA) complex formation with DAIRs are restricted to electron-rich reacting partners serving as donors due to the well-known cage effect. We discovered a practical and high-yielding visible-light-induced EDA platform to generate aryl radicals from the corresponding DAIRs and use them to synthesize key chalcogenides. In this process, an array of DAIRs and dichalcogenides react in the presence of 1,4 diazabicyclo[2.2.2]octane (DABCO) as a cheap and readily available donor, furnishing a variety of di(hetero)aryl and aryl/alkyl chalcogenides in good yields. The method is scalable, features a broad scope with good yields, and operates under open-to-air conditions. The photoinduced chalcogenation technology is suitable for late-stage functionalizations and disulfide bioconjugations and facilitates access to biologically relevant thioesters, dithiocarbamates, sulfoximines, and sulfones. Moreover, the method applies to synthesizing diverse pharmaceuticals, such as vortioxetine, promazine, mequitazine, and dapsone, under amenable conditions.
Collapse
Affiliation(s)
- Prahallad Meher
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sushanta Kumar Parida
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| | - Sanat Kumar Mahapatra
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Lisa Roy
- IOC Odisha Campus Bhubaneswar, Institute of Chemical Technology Mumbai, Bhubaneswar, 751013, India
| | - Sandip Murarka
- Department of Chemistry, Indian Institute of Technology Jodhpur, Karwar, Rajasthan, 342037, India
| |
Collapse
|
8
|
Zhu Y, Yi F, Zhou N, Zhang Y, Zhang Y, Zhao X, Lu K. Photochemical tandem reaction of nitrogen containing heterocycles, bicyclo[1.1.1]pentane, and difluoroiodane(III) reagents. Org Biomol Chem 2024; 22:7024-7034. [PMID: 39143911 DOI: 10.1039/d4ob01020e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A visible light-induced difluoroalkylation/heteroarylation of [1.1.1]propellane with nitrogen containing heterocycles and difluoroiodane(III) reagents was achieved. Various heteroarenes and difluoroiodane(III) reagents exhibited good compatibility, yielding the desired products in moderate to good yields. The accessibility of the reagents and the mild reaction conditions establish this method as an alternative and practical strategy for accessing diverse 1-difluoroalkyl-3-heteroaryl bicyclo[1.1.1]pentanes (BCPs).
Collapse
Affiliation(s)
- Yaqing Zhu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Fengchao Yi
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ningning Zhou
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Yi Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Ying Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| | - Xia Zhao
- College of Chemistry, TianJin Key Laboratory of Structure and Performance for Functional Molecules, TianJin Normal University, TianJin, 300387, China
| | - Kui Lu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, TianJin University of Science &Technology, TianJin 300457, China.
| |
Collapse
|
9
|
Zhang SP, Guo DW, Yang ML, Xia YT, Yang WC. EDA Complex-Enabled Annulation to Access CF 2-Containing Tetralones and Quinazolinones Using Persulfates as Electron Donors. J Org Chem 2024; 89:10614-10623. [PMID: 39051432 DOI: 10.1021/acs.joc.4c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
A photocatalyst-free and EDA complex-enabled radical cascade cyclization reaction of inactive alkenes with bromodifluoroacetamides was reported for the divergent synthesis of fluorine-containing tetralones and quinazolinones. In this transformation, persulfates as electron donors and difluoro bromamide as electron acceptors generate the EDA complex. This is a promising photochemical method with advantages such as mild reaction conditions, simple operation, being metal-free, and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shu-Peng Zhang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Da-Wei Guo
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Mei-Ling Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Yun-Tao Xia
- College of Chemistry & Chemical Engineering, Henan University of Technology, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, China
| | - Wen-Chao Yang
- Guangling College and School of Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
- Key Laboratory of Green and Precise Synthetic Chemistry, Ministry of Education, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
10
|
Klein-Hessling C, Blockhaus T, Sünkel K. Synthesis, spectroscopic and crystallographic characterization of various cymantrenyl thioethers [Mn{C 5H xBr y(SMe) z}(PPh 3)(CO) 2]. Acta Crystallogr C Struct Chem 2024; 80:383-393. [PMID: 38967631 PMCID: PMC11299206 DOI: 10.1107/s205322962400603x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
Starting from [Mn(C5H4Br)(PPh3)(CO)2] (1a), the cymantrenyl thioethers [Mn(C5H4SMe)(PPh3)(CO)2] (1b) and [Mn{C5H4-nBr(SMe)n}(PPh3)(CO)2] (n = 1 for compound 2, n = 2 for 3 and n = 3 for 4) were obtained, using either n-butyllithium (n-BuLi), lithium diisopropylamide (LDA) or lithium tetramethylpiperidide (LiTMP) as base, followed by electrophilic quenching with MeSSMe. Stepwise consecutive reaction of [Mn(C5Br5)(PPh3)(CO)2] with n-BuLi and MeSSMe led finally to [Mn{C5(SMe)5}(PPh3)(CO)2] (11), only the fifth complex to be reported containing a perthiolated cyclopentadienyl ring. The molecular and crystal structures of 1b, 3, 4 and 11 were determined and were studied for the occurrence of S...S and S...Br interactions. It turned out that although some interactions of this type occurred, they were of minor importance for the arrangement of the molecules in the crystal.
Collapse
Affiliation(s)
- Christian Klein-Hessling
- Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany
| | - Tobias Blockhaus
- Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany
| | - Karlheinz Sünkel
- Chemistry, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Munich, D-81377, Germany
| |
Collapse
|
11
|
Niwetmarin W, Saesian N, Saruengkhanphasit R, Eurtivong C, Thasana N, Ruchirawat S. Metal- and photocatalyst-free approach to visible-light-induced acylation of quinoxalinones. Org Biomol Chem 2024; 22:5924-5929. [PMID: 38698760 DOI: 10.1039/d4ob00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A transition-metal- and photocatalyst-free photochemical reaction was successfully developed for the direct acylation of quinoxalin-2(1H)-ones, which was enabled by the formation of electron donor-acceptor (EDA) complexes. The use of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as the electron donor allows efficient and operationally simple access to a series of C3-aroylated and acylated quinoxalin-2(1H)-ones with moderate to good yields.
Collapse
Affiliation(s)
- Worawat Niwetmarin
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
| | - Naiyana Saesian
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
| | | | - Chatchakorn Eurtivong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Nopporn Thasana
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Bangkok 10210, Thailand.
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok 10210, Thailand
| |
Collapse
|
12
|
Yoshizawa K, Li BX, Matsuyama T, Wang C, Uchiyama M. Visible-Light-Driven Germyl Radical Generation via EDA-Catalyzed ET-HAT Process. Chemistry 2024; 30:e202401546. [PMID: 38716768 DOI: 10.1002/chem.202401546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 06/28/2024]
Abstract
We have established a facile and efficient protocol for the generation of germyl radicals by employing photo-excited electron transfer (ET) in an electron donor-acceptor (EDA) complex to drive hydrogen-atom transfer (HAT) from germyl hydride (R3GeH). Using a catalytic amount of EDA complex of commercially available thiol and benzophenone derivatives, the ET-HAT cycle smoothly proceeds simply upon blue-light irradiation without any transition metal or photocatalyst. This protocol also affords silyl radical from silyl hydride.
Collapse
Affiliation(s)
- Kaito Yoshizawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Bi-Xiao Li
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Taro Matsuyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Chao Wang
- Faculty of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical, and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | - Masanobu Uchiyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano, 380-8553, Japan
| |
Collapse
|
13
|
Le Zhang, He S, Hou J, Ye M, Chen J, Lv G, Huang T, Yang Z, Wu Y. Visible-light-mediated synthesis of non-anomeric S-aryl glycosides via a photoactive electron-donor-acceptor complex. Chem Commun (Camb) 2023; 59:13759-13762. [PMID: 37916505 DOI: 10.1039/d3cc03474g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A visible-light-mediated glycosylation reaction between glycosyl redox-active esters and disulfides has been reported, through which a series of S-aryl glycosides were obtained in good yields with satisfactory stereoselectivity. The preliminary mechanistic studies revealed that this transformation proceeded via an EDA complex. Moreover, the potential application value was demonstrated in the late-stage functionalisation of drug molecules and a gram-scale experiment.
Collapse
Affiliation(s)
- Le Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Shiyun He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Jinyu Hou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Meiling Ye
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Jian Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Guanghui Lv
- Department of Pharmacy, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Tianle Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Zhongzhen Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | - Yong Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| |
Collapse
|
14
|
Bugaenko DI, Volkov AA, Karchava AV. A Thiol-Free Route to Alkyl Aryl Thioethers. J Org Chem 2023; 88:9968-9972. [PMID: 37432044 DOI: 10.1021/acs.joc.3c00734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Most existing methods for the synthesis of alkyl aryl thioethers require the use of mercaptans as the starting materials, which comes with practical limitations. Reactions of diaryliodonium salts with xanthate salts, easily prepared from the corresponding alcohols and CS2, under the developed conditions represent an operationally simple, thiol-free method for the synthesis of these valuable compounds. The protocol features high functional group tolerance and can be applied to the late-stage C-H functionalization and for the introduction of a CD3S group.
Collapse
Affiliation(s)
- Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | - Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119991, Russia
| | | |
Collapse
|
15
|
Bisoyi A, Tripathy AR, Yedase GS, P SS, Choudhury U, Yatham VR. Photoinduced Decarboxylative C3-H Alkylation of Quinoxalin-2(1 H)-ones. J Org Chem 2023; 88:2631-2641. [PMID: 36734694 DOI: 10.1021/acs.joc.2c02823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An efficient, catalyst- and additive-free, visible-light-driven radical C3-H alkylation of quinoxalin-2(1H)-one derivatives has been developed. This reaction utilizes alkyl-NHP-esters as an alkyl radical donor and quinoxalin-2(1H)-one derivatives as an alkyl radical acceptor. The operationally simple protocol works under mild reaction conditions and tolerates a variety of functional groups. Furthermore, the synthetic utility of the methodology was successfully implemented for synthesizing biologically relevant C3-alkyl substituted quinoxalin-2(1H)-one derivatives.
Collapse
Affiliation(s)
- Akash Bisoyi
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Alisha Rani Tripathy
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Shifana Sinu P
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Udita Choudhury
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
16
|
Herrera-Luna JC, Pérez-Aguilar MC, Gerken L, García Mancheño O, Consuelo Jiménez M, Pérez-Ruiz R. Effective Formation of New C(sp 2 )-S Bonds via Photoactivation of Alkylamine-based Electron Donor-Acceptor Complexes. Chemistry 2023; 29:e202203353. [PMID: 36314234 PMCID: PMC10107790 DOI: 10.1002/chem.202203353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/12/2022]
Abstract
A novel visible light promoted formation of CAryl- S bonds through electron donor-acceptor (EDA) complexes of alkylamines with 5- and 6-membered (hetero)arene halides is presented. This represents the first EDA-based thiolation method not relying on π-π or a thiolate-anion-π interactions and provides a facile access to heteroarene radicals, which can be suitably trapped by disulfide derivatives to form the corresponding versatile arylsulfides. Mechanistic investigations on the aspects of the whole process were conducted by spectroscopic measurements, demonstrating the hypothesized EDA complex formation. Moreover, the strength of this method has been proven by a gram-scale synthesis of thiolated products and the late-stage derivatization of an anticoagulant drug.
Collapse
Affiliation(s)
- Jorge C Herrera-Luna
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| | | | - Leon Gerken
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - Olga García Mancheño
- Organic Chemistry Institute, University of Münster, Corrensstrasse 36, 48149, Münster, Germany
| | - M Consuelo Jiménez
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| | - Raúl Pérez-Ruiz
- Departamento de Química, Universitat Politècnica de València (UPV), Camí de Vera S/N, 46022, Valencia, Spain
| |
Collapse
|
17
|
Wei Z, Lou Z, Ni C, Zhang W, Hu J. Visible-light-promoted S-trifluoromethylation of thiophenols with trifluoromethyl phenyl sulfone. Chem Commun (Camb) 2022; 58:10024-10027. [PMID: 35983787 DOI: 10.1039/d2cc03921d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Trifluoromethyl phenyl sulfone is traditionally a nucleophilic trifluoromethylating agent. Herein, we report the first example of the use of trifluoromethyl phenyl sulfone as a trifluoromethyl radical precursor. Arylthiolate anions can form electron donor-acceptor (EDA) complexes with trifluoromethyl phenyl sulfone, which can undergo an intramolecular single electron transfer (SET) reaction under visible light irradiation, thus realizing the S-trifluoromethylation of thiophenols under photoredox catalyst-free conditions. Similar S-perfluoroethylation and S-perfluoro-iso-propylation of thiophenols are also achieved using the corresponding perfluoroalkyl phenyl sulfones.
Collapse
Affiliation(s)
- Zhiqiang Wei
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Zhengzhao Lou
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| | - Chuanfa Ni
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Wei Zhang
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China.
| | - Jinbo Hu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China. .,School of Physical Science and Technology, ShanghaiTech University 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
18
|
Volkov AA, Bugaenko DI, Bogdanov AV, Karchava AV. Visible-Light-Driven Thioesterification of Aryl Halides with Potassium Thiocarboxylates: Transition-Metal Catalyst-Free Incorporation of Sulfur Functionalities into an Aromatic Ring. J Org Chem 2022; 87:8170-8182. [PMID: 35653579 DOI: 10.1021/acs.joc.2c00913] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reactions of acceptor-substituted aryl iodides and bromides with potassium thiocarboxylates under white light irradiation allow for the preparation of S-aryl thioesters including synthetically versatile S-aryl thioacetates. This transition-metal and external photocatalyst-free method features extremely mild reaction conditions compared with those used in transition-metal-catalyzed protocols. Reactions proceed via the initial formation of an electron donor-acceptor (EDA) complex in the ground state, which was supported by UV-vis spectra. Electron paramagnetic resonance (EPR) spin-trapping experiments using phenyl-N-tert-butylnitrone (PBN) have revealed the radical nature of the reaction.
Collapse
Affiliation(s)
- Alexey A Volkov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Dmitry I Bugaenko
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Moscow State University, Moscow 119234, Russia
| | | |
Collapse
|
19
|
Cabrera-Afonso MJ, Granados A, Molander GA. Sustainable Thioetherification via Electron Donor-Acceptor Photoactivation Using Thianthrenium Salts. Angew Chem Int Ed Engl 2022; 61:e202202706. [PMID: 35294095 PMCID: PMC9117462 DOI: 10.1002/anie.202202706] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 01/07/2023]
Abstract
The synthesis of sulfides has been widely studied because this functional subunit is prevalent in biomolecules and pharmaceuticals, as well as being a useful synthetic platform for further elaboration. Thus, various methods to build C-S bonds have been developed, but typically they require the use of precious metals or harsh conditions. Electron donor-acceptor (EDA) complex photoactivation strategies have emerged as versatile and sustainable ways to achieve C-S bond formation, avoiding challenges associated with previous methods. This work describes an open-to-air, photoinduced, site-selective C-H thioetherification from readily available reagents via EDA complex formation that tolerates a wide range of different functional groups. Moreover, C(sp2 )-halogen bonds remain intact using this protocol, allowing late-stage installation of the sulfide motif in various bioactive scaffolds, while allowing yet further modification through more traditional C-X bond cleavage protocols. Additionally, various mechanistic investigations support the envisioned EDA complex scenario.
Collapse
Affiliation(s)
- María Jesús Cabrera-Afonso
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Albert Granados
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, University of Pennsylvania, Roy and Diana Vagelos Laboratories, 231 S. 34th Street, Philadelphia, PA 19104-6323, USA
| |
Collapse
|
20
|
Cabrera-Afonso MJ, Granados A, Molander G. Sustainable Thioetherification via Electron Donor‐Acceptor Photoactivation using Thianthrenium Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Albert Granados
- University of Pennsylvania Department of Chemistry UNITED STATES
| | - Gary Molander
- University of Pennsylvania Department of Chemistry 231 South 34th Street 19104-6323 Philadelphia UNITED STATES
| |
Collapse
|
21
|
Wang R, Xie KJ, Fu Q, Wu M, Pan GF, Lou DW, Liang FS. Transformation of Thioacids into Carboxylic Acids via a Visible-Light-Promoted Atomic Substitution Process. Org Lett 2022; 24:2020-2024. [PMID: 35263540 DOI: 10.1021/acs.orglett.2c00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A visible-light-promoted atomic substitution reaction for transforming thiocacids into carboxylic acids with dimethyl sulfoxide (DMSO) as the oxygen source has been developed, affording various alkyl and aryl carboxylic acids in over 90% yields. The atomic substitution process proceeds smoothly through the photochemical reactivity of the formed hydrogen-bonding adduct between thioacids and DMSO. A DMSO-involved proton-coupled electron transfer (PCET) and the simultaneous generation of thiyl and hydroxyl radicals are proposed to be key steps for realizing the transformation.
Collapse
Affiliation(s)
- Rui Wang
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kai-Jun Xie
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Qiang Fu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Min Wu
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Gao-Feng Pan
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Da-Wei Lou
- School of Petrochemical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Fu-Shun Liang
- College of Chemistry, Liaoning University, Shenyang 110036, China
| |
Collapse
|
22
|
Nie FY, Cai YP, Song QH. Visible Light-Driven Decarboxylative Alkylation of Aldehydes via Electron Donor-Acceptor Complexes of Active Esters. J Org Chem 2022; 87:1262-1271. [PMID: 34989227 DOI: 10.1021/acs.joc.1c02586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There are some synthesis methods from widely available aldehydes to the corresponding ketones, however, they involved in multistep reactions with Grignard's reagents or transition metal catalysts. In this paper, we have developed photocatalyst-free and visible light-driven decarboxylative alkylation of pyridinaldehydes. The photochemical reactions are initiated via photoinduced single electron transfer from triethylamine to N-hydroxyphthalimide esters in electron donor-acceptor complexes. This photochemical method can achieve to translate 15 pyridinaldehydes and 11 2-quinolinaldehydes to the corresponding ketones. Furthermore, this strategy can also achieve two other transformations, disulfanes to aryl sulfides and a styrene sulfone to the alkyl-substituted alkene.
Collapse
Affiliation(s)
- Fang-Yuan Nie
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi-Ping Cai
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Qin-Hua Song
- Department of Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|