1
|
Orlova AV, Malysheva NN, Panova MV, Podvalnyy NM, Medvedev MG, Kononov LO. Comparison of glycosyl donors: a supramer approach. Beilstein J Org Chem 2024; 20:181-192. [PMID: 38318458 PMCID: PMC10840533 DOI: 10.3762/bjoc.20.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/15/2024] [Indexed: 02/07/2024] Open
Abstract
The development of new methods for chemical glycosylation commonly includes comparison of various glycosyl donors. An attempted comparison of chemical properties of two sialic acid-based thioglycoside glycosyl donors, differing only in the substituent at O-9 (trifluoroacetyl vs chloroacetyl), at different concentrations (0.05 and 0.15 mol·L-1) led to mutually excluding conclusions concerning their relative reactivity and selectivity, which prevented us from revealing a possible influence of remote protective groups at O-9 on glycosylation outcome. According to the results of the supramer analysis of the reaction solutions, this issue might be related to the formation of supramers of glycosyl donors differing in structure hence chemical properties. These results seem to imply that comparison of chemical properties of different glycosyl donors may not be as simple and straightforward as it is usually considered.
Collapse
Affiliation(s)
- Anna V Orlova
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Nelly N Malysheva
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Maria V Panova
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Nikita M Podvalnyy
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Michael G Medvedev
- Theoretical Chemistry Group, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| | - Leonid O Kononov
- Laboratory of Glycochemistry, N.D. Zelinsky Institute of Organic Chemistry, Moscow, Russian Federation
| |
Collapse
|
2
|
Chang CW, Lin MH, Chiang TY, Wu CH, Lin TC, Wang CC. Unraveling the promoter effect and the roles of counterion exchange in glycosylation reaction. SCIENCE ADVANCES 2023; 9:eadk0531. [PMID: 37851803 PMCID: PMC10584349 DOI: 10.1126/sciadv.adk0531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023]
Abstract
The stereoselectivity of glycosidic bond formation continues to pose a noteworthy hurdle in synthesizing carbohydrates, primarily due to the simultaneous occurrence of SN1 and SN2 processes during the glycosylation reaction. Here, we applied an in-depth analysis of the glycosylation mechanism by using low-temperature nuclear magnetic resonance and statistical approaches. A pathway driven by counterion exchanges and reaction byproducts was first discovered to outline the stereocontributions of intermediates. Moreover, the relative reactivity values, acceptor nucleophilic constants, and Hammett substituent constants (σ values) provided a general index to indicate the mechanistic pathways. These results could allow building block tailoring and reaction condition optimization in carbohydrate synthesis to be greatly facilitated and simplified.
Collapse
Affiliation(s)
- Chun-Wei Chang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Huei Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tsun-Yi Chiang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chia-Hui Wu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tzu-Chun Lin
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Cheng-Chung Wang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
3
|
Komarova BS, Novikova NS, Gerbst AG, Sinitsyna OA, Rubtsova EA, Kondratyeva EG, Sinitsyn AP, Nifantiev NE. Combination of 3- O-Levulinoyl and 6- O-Trifluorobenzoyl Groups Ensures α-Selectivity in Glucosylations: Synthesis of the Oligosaccharides Related to Aspergillus fumigatus α-(1 → 3)-d-Glucan. J Org Chem 2023; 88:12542-12564. [PMID: 37593939 DOI: 10.1021/acs.joc.3c01283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Stereospecific α-glucosylation of primary and secondary OH-group at carbohydrate acceptors is achieved using glucosyl N-phenyl-trifluoroacetimidate (PTFAI) donor protected with an electron-withdrawing 2,4,5-trifluorobenzoyl (TFB) group at O-6 and the participating levulinoyl (Lev) group at O-3. New factors have been revealed that might explain α-stereoselectivity in the case of TFB and pentafluorobenzoyl (PFB) groups at O-6. They are of conformational nature and confirmed by DFT calculations. The potential of this donor, as well as the orthogonality of TFB and Lev protecting groups, is showcased by the synthesis of α-(1 → 3)-linked pentaglucoside corresponding to Aspergillus fumigatus α-(1 → 3)-d-glucan and of its hexasaccharide derivative, bearing β-glucosamine residue at the non-reducing end.
Collapse
Affiliation(s)
- Bozhena S Komarova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Natalia S Novikova
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey G Gerbst
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Olga A Sinitsyna
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
| | - Ekaterina A Rubtsova
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Elena G Kondratyeva
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Arkady P Sinitsyn
- Department of Chemistry, M.V. Lomonosov Moscow State University, Vorobyevy Gory 1-11, Moscow 119992, Russia
- FRC "Fundamentals of Biotechnology", Russian Academy of Sciences, Leninsky prospect 33-2, Moscow 119071, Russia
| | - Nikolay E Nifantiev
- Laboratory of Glycoconjugate Chemistry, N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
4
|
Upadhyaya K, Osorio-Morales N, Crich D. Can Side-Chain Conformation and Glycosylation Selectivity of Hexopyranosyl Donors Be Controlled with a Dummy Ligand? J Org Chem 2023; 88:3678-3696. [PMID: 36877600 PMCID: PMC10028612 DOI: 10.1021/acs.joc.2c02889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
| | - Nicolas Osorio-Morales
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, Georgia 30602, United States
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
5
|
Tseng PS, Ande C, Moremen KW, Crich D. Influence of Side Chain Conformation on the Activity of Glycosidase Inhibitors. Angew Chem Int Ed Engl 2023; 62:e202217809. [PMID: 36573850 PMCID: PMC9908843 DOI: 10.1002/anie.202217809] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 12/28/2022]
Abstract
Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.
Collapse
Affiliation(s)
- Po-Sen Tseng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| | - Chennaiah Ande
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA)
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA),Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602 (USA)
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602 (USA),Department of Chemistry, University of Georgia, Athens, GA 30602 (USA),Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602 (USA)
| |
Collapse
|
6
|
Siyabalapitiya Arachchige S, Crich D. Syntheses of Legionaminic Acid, Pseudaminic Acid, Acetaminic Acid, 8- epi-Acetaminic Acid, and 8- epi-Legionaminic Acid Glycosyl Donors from N-Acetylneuraminic Acid by Side Chain Exchange. Org Lett 2022; 24:2998-3002. [PMID: 35420827 PMCID: PMC9066425 DOI: 10.1021/acs.orglett.2c00894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metaperiodate cleavage of the glycerol side chain from an N-acetyl neuraminic acid-derived thioglycoside and condensation with the two enantiomers of the Ellman sulfinamide afford two diastereomeric N-sulfinylimines from which bacterial sialic acid donors with the legionaminic and acetaminic acid configurations and their 8-epi-isomers are obtained by samarium iodide-mediated coupling with acetaldehyde and subsequent manipulations. A variation on the theme, with inversion of the configuration at C5, similarly provides two differentially protected pseudaminic acid donors.
Collapse
Affiliation(s)
- Sameera Siyabalapitiya Arachchige
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, Georgia 30602, United States.,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, Georgia 30602, United States.,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Arachchige SS, Crich D. Side Chain Conformation and Its Influence on Glycosylation Selectivity in Hexo- and Higher Carbon Furanosides. J Org Chem 2022; 87:316-339. [PMID: 34905382 PMCID: PMC8741747 DOI: 10.1021/acs.joc.1c02374] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We describe the synthesis and side chain conformational analysis of a series of four 6-deoxy-2,3,5-tri-O-benzyl hexofuranosyl donors with the d-gluco, l-ido, d-altro, and l-galacto configurations. The conformation of the exocyclic bond of these compounds depends on the relative configuration of the point of attachment of the side chain to the ring and of the two flanking centers and can be predicted on that basis analogously to the heptopyranose analogs. Variable-temperature nuclear magnetic resonance (VT NMR) spectroscopy of the activated donors reveals complex, configuration-dependent mixtures of intermediates that we interpret in terms of fused and bridged oxonium ions arising from participation by the various benzyl ethers. The increased importance of ether participation in the furanoside series compared to the pyranosides is discussed in terms of the reduced stabilization afforded to furanosyl oxocarbenium ions by covalent triflate formation. The stereoselectivities of the four donors are discussed on the basis of the benzyl ether participation model.
Collapse
Affiliation(s)
- Sameera Siyabalapitiya Arachchige
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA 30602, USA,Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA,Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA 30602, USA
| |
Collapse
|
8
|
Upadhyaya K, Subedi YP, Crich D. Direct Experimental Characterization of a Bridged Bicyclic Glycosyl Dioxacarbenium Ion by 1 H and 13 C NMR Spectroscopy: Importance of Conformation on Participation by Distal Esters. Angew Chem Int Ed Engl 2021; 60:25397-25403. [PMID: 34543505 PMCID: PMC8595841 DOI: 10.1002/anie.202110212] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 11/11/2022]
Abstract
Low-temperature NMR studies with a 4-C-methyl-4-O-benzoyl galactopyranosyl donor enable the observation and characterization of a bridged bicyclic dioxacarbenium ion arising from participation by a distal ester. Variable-temperature NMR studies reveal this bridged ion to decompose at temperatures above ≈-30 °C. In the absence of the methyl group, the formation of a bicyclic ion is not observed. It is concluded that participation by typical secondary distal esters in glycosylation reactions is disfavored in the ground state conformation of the ester from which it is stereoelectronically impossible. Methylation converts the secondary ester to a conformationally more labile tertiary ester, removes this barrier, and renders participation more favorable. Nevertheless, the minor changes in selectivity in model glycosylation reactions on going from the secondary to the tertiary esters at both low and room temperature argue against distal group participation being a major stereodirecting factor even for the tertiary system.
Collapse
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - Yagya P Subedi
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, USA
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, 140 Cedar Street, Athens, GA, 30602, USA
| |
Collapse
|
9
|
Upadhyaya K, Subedi YP, Crich D. Direct Experimental Characterization of a Bridged Bicyclic Glycosyl Dioxacarbenium Ion by
1
H and
13
C NMR Spectroscopy: Importance of Conformation on Participation by Distal Esters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kapil Upadhyaya
- Department of Pharmaceutical and Biomedical Sciences University of Georgia 250 West Green Street Athens GA 30602 USA
| | - Yagya P. Subedi
- Department of Pharmaceutical and Biomedical Sciences University of Georgia 250 West Green Street Athens GA 30602 USA
| | - David Crich
- Department of Pharmaceutical and Biomedical Sciences University of Georgia 250 West Green Street Athens GA 30602 USA
- Complex Carbohydrate Research Center University of Georgia 315 Riverbend Road Athens GA 30602 USA
- Department of Chemistry University of Georgia 140 Cedar Street Athens GA 30602 USA
| |
Collapse
|