1
|
Singh R, Sindhu J, Singh D, Kumar P. Key molecular scaffolds in the development of clinically viable α-amylase inhibitors. Future Med Chem 2025; 17:347-362. [PMID: 39835704 PMCID: PMC11792802 DOI: 10.1080/17568919.2025.2453421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
The escalating cases of type II diabetes combined with adverse side effects of current antidiabetic drugs spurred the advancement of innovative approaches for the management of postprandial glucose levels. α-Amylase is an endoamylase responsible for the breakdown of internal α-1,4-glycosidic linkages in dietary starch, producing oligosaccharides. Subsequently, α-glucosidase degraded these oligosaccharides to monosaccharides, which are absorbed into the bloodstream and become available to the body. The inhibitors of α-amylase reduced the digestibility of carbohydrates accompanied by delayed glucose absorption, leading to decreased blood glucose levels after meals and thus, inhibition of the enzyme seems to be a crucial strategy for diabetes management and improving overall glycemic control in diabetic patients. The present review article emphasizes the therapeutic promise of recently discovered potential α-amylase inhibitors, highlighting their in vitro, in silico and in vivo profiles. Ultimately, we addressed the contemporary challenges and potential routes ahead in the search for safe and reliable α-amylase inhibitors for clinical use, summarizing the most recent research in the field.
Collapse
Affiliation(s)
- Rahul Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- School of Chemistry, Indian Institutes of Science Education and Research, Thiruvananthapuram, India
| | - Jayant Sindhu
- Department of Chemistry, COBS&H, CCS Haryana Agricultural University, Hisar, India
| | - Devender Singh
- Department of Chemistry, Maharshi Dayanand University, Rohtak, India
| | - Parvin Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| |
Collapse
|
2
|
Karjee P, Debnath B, Mandal S, Saha S, Punniyamurthy T. One-pot C-N/C-C bond formation and oxidation of donor-acceptor cyclopropanes with tetrahydroisoquinolines: access to benzo-fused indolizines. Chem Commun (Camb) 2024; 60:4068-4071. [PMID: 38506143 DOI: 10.1039/d4cc00810c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
One-pot C-N/C-C bond formation of donor-acceptor cyclopropanes (DACs) with tetrahydroisoquinolines (THIQs) has been achieved to furnish benzo-fused indolizines. These reactions involve a MgI2-catalyzed ring opening of DACs and oxidative annulation using Mn(OAc)3·2H2O. The substrate scope and functional group diversity are the important practical features.
Collapse
Affiliation(s)
- Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
3
|
García Maza LJ, Salgado AM, Kouznetsov VV, Meléndez CM. Pyrrolo[2,1- a]isoquinoline scaffolds for developing anti-cancer agents. RSC Adv 2024; 14:1710-1728. [PMID: 38187449 PMCID: PMC10768717 DOI: 10.1039/d3ra07047f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Fused pyrrolo[2,1-a]isoquinolines have emerged as compelling molecules with remarkably potent cytotoxic activity and topoisomerase inhibitors. This comprehensive review delves into the intricate world of this family of compounds, analyzing the natural marine lamellarins known for their diverse and complex chemical structures, exploring structure-activity relationships (SARs), and highlighting their remarkable versatility. The review emphasizes their fundamental role as topoisomerase inhibitors and cytotoxic agents, as well as some crucial aspects of the chemistry of pyrrolo[2,1-a]isoquinolines, exploring synthetic strategies in total synthesis and molecular diversification trends, highlighting their importance in the field of medicinal chemistry and beyond.
Collapse
Affiliation(s)
- Leidy J García Maza
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Arturo Mendoza Salgado
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| | - Vladimir V Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander Piedecuesta 680002 Colombia
| | - Carlos M Meléndez
- Facultad de Ciencias Básicas, Grupo de Investigación de Química Orgánica y Biomédica, Universidad del Atlántico Barranquilla Colombia
| |
Collapse
|
4
|
Vijayakumar A, Manod M, Krishna RB, Mathew A, Mohan C. Diversely functionalized isoquinolines and their core-embedded heterocyclic frameworks: a privileged scaffold for medicinal chemistry. RSC Med Chem 2023; 14:2509-2534. [PMID: 38107174 PMCID: PMC10718595 DOI: 10.1039/d3md00248a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Isoquinoline-enrooted organic small-molecules represent a challenging molecular target in the organic synthesis arsenal attributed to their structural diversity and therapeutic importance. Into the bargain, isoquinolines are significant structural frameworks in modern medicinal chemistry and drug development. Consequently, synthetic organic and medicinal chemists have been intensely interested in efficient synthetic tactics for the sustainable construction of isoquinoline frameworks and their derivatives in enantiopure or racemic forms. This review accentuates an overview of the literature on the modern synthetic approaches exploited in synthesising isoquinolines and their core embedded heterocyclic skeletons from 2021 to 2022. In detail, the methodologies and inspected pharmacological studies for the array of diversely functionalized isoquinolines or their core-embedded heterocyclic/carbocyclic structures involving the introduction of substituents at C-1, C-3, and C-4 carbon and N-2 atom, bond constructions at the C1-N2 atom and C3-N2 atom, and structural scaffolding within isoquinoline compounds have been reviewed. This intensive study highlights the need for and relevance of relatively unexplored bioisosterism employing isoquinoline-based small-molecules in drug design.
Collapse
Affiliation(s)
- Archana Vijayakumar
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - M Manod
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - R Bharath Krishna
- Institute for Integrated Programmes and Research in Basic Sciences, Mahatma Gandhi University Kottayam 686560 India
| | - Abra Mathew
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
- Department of Chemistry, Indian Institute of Technology Palakkad Kerala 678577 India
| | - Chithra Mohan
- School of Chemical Sciences, Mahatma Gandhi University Kottayam 686560 India
| |
Collapse
|
5
|
Alorini T, Al-Hakimi AN, Daoud I, Alminderej F, Albadri AEAE, Aroua L. Synthesis, characterization, anticancer activity and molecular docking of metal complexes bearing a new Schiff base ligand. J Biomol Struct Dyn 2023; 41:10969-10984. [PMID: 36961125 DOI: 10.1080/07391102.2023.2191725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/10/2022] [Indexed: 03/25/2023]
Abstract
2-((E)-((4-(((E)-4-Nitrobenzylidene)amino)phenyl)imino)methyl)naphthalen-1-ol, was synthesised followed by metalation with Fe(III), Co(III), Cu(II), Zn(II) and Ni(II) metals. The compounds were characterised by different methods CHN, AAS, IR, NMR, XRD, TGA and UV-Vis. The results reveal that the ligand has bidentate behavior, and it is bound with metals by a coordination bond through both the nitrogen atom of the azomethine group and the oxygen atom, this provided an octahedral geometry. The X-ray diffraction of the compounds indicate that the ligands and complexes of Co(III), Fe(III) and Zn(II) have a crystalline nature, whereas the Ni(II) and Cu(II) have an amorphous structure. The agar diffusion method (hole plate) was used to evaluate the ligand's and its complexes' antibacterial and antifungal effects on Salmonella enterica serovar typhi and Candida albicans, respectively. It was observed that the Fe(III) complex had the best activity among the compounds against microbial strains. Cytotoxicity of new metal complexes was also assessed against A549, HepG-2 and PC-3 cancer cells. Results demonstrated that the Cu(II) complex displayed the preeminent activity among the synthesised compounds against all the tested cell lines. Furthermore, molecular docking simulation revealed that the Fe(III) complex is shown to have a high affinity with the active sites of two targets of microbial strains. Also, the Cu(II) complex shown to has a high affinity with the active sites of three targets of A-549, HepG-2 and PC-3 cancer cells, which was confirmed by the formation of the different modes of interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Thamer Alorini
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed N Al-Hakimi
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| | - Ismail Daoud
- Faculty of Science, Department of Chemistry, Laboratory of Natural Substances and Bioactive (LASNABIO), University Abou-Bakr Belkaid, Tlemcen, Algeria
- Department of Matter Sciences, University of Mohamed Khider Biskra, Biskra, Algeria
| | - Fahad Alminderej
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Abuzar E A E Albadri
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Lotfi Aroua
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Laboratory of Organic Structural Chemistry & Macromolecules, Department of Chemistry, Faculty of Sciences of Tunis, Tunis El-Manar University, Tunis, Tunisia
| |
Collapse
|
6
|
Toumi A, Abdella FI, Boudriga S, Alanazi TYA, Alshamari AK, Alrashdi AA, Dbeibia A, Hamden K, Daoud I, Knorr M, Kirchhoff JL, Strohmann C. Synthesis of Tetracyclic Spirooxindolepyrrolidine-Engrafted Hydantoin Scaffolds: Crystallographic Analysis, Molecular Docking Studies and Evaluation of Their Antimicrobial, Anti-Inflammatory and Analgesic Activities. Molecules 2023; 28:7443. [PMID: 37959862 PMCID: PMC10650415 DOI: 10.3390/molecules28217443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/19/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
In a sustained search for novel potential drug candidates with multispectrum therapeutic application, a series of novel spirooxindoles was designed and synthesized via regioselective three-component reaction between isatin derivatives, 2-phenylglycine and diverse arylidene-imidazolidine-2,4-diones (Hydantoins). The suggested stereochemistry was ascertained by an X-ray diffraction study and NMR spectroscopy. The resulting tetracyclic heterocycles were screened for their in vitro and in vivo anti-inflammatory and analgesic activity and for their in vitro antimicrobial potency. In vitro antibacterial screening revealed that several derivatives exhibited remarkable growth inhibition against different targeted microorganisms. All tested compounds showed excellent activity against the Micrococccus luteus strain (93.75 µg/mL ≤ MIC ≤ 375 µg/mL) as compared to the reference drug tetracycline (MIC = 500 µg/mL). Compound 4e bearing a p-chlorophenyl group on the pyrrolidine ring exhibited the greatest antifungal potential toward Candida albicans and Candida krusei (MIC values of 23.43 µg/mL and 46.87 µg/mL, respectively) as compared to Amphotericin B (MIC = 31.25 and 62.50 µg/mL, respectively). The target compounds were also tested in vitro against the lipoxygenase-5 (LOX-5) enzyme. Compounds 4i and 4l showed significant inhibitory activity with IC50 = 1.09 mg/mL and IC50 = 1.01 mg/mL, respectively, more potent than the parent drug, diclofenac sodium (IC50 = 1.19 mg/mL). In addition, in vivo evaluation of anti-inflammatory and analgesic activity of these spirooxindoles were assessed through carrageenan-induced paw edema and acetic acid-induced writhing assays, respectively, revealing promising results. In silico molecular docking and predictive ADMET studies for the more active spirocompounds were also carried out.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Faiza I.A. Abdella
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Tahani Y. A. Alanazi
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | - Asma K. Alshamari
- Department of Chemistry, College of Science, Ha’il University, Ha’il 81451, Saudi Arabia (T.Y.A.A.)
| | | | - Amal Dbeibia
- Laboratory of Analysis, Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, Monastir 5019, Tunisia;
| | - Khaled Hamden
- Laboratory of Bioresources: Integrative Biology and Valorization, Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir 5000, Tunisia;
| | - Ismail Daoud
- Department of Matter Sciences, University of Mohamed Khider, BP 145 RP, Biskra 07000, Algeria;
- Laboratory of Natural and Bio-Actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen 13000, Algeria
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Jan-Lukas Kirchhoff
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (J.-L.K.); (C.S.)
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (J.-L.K.); (C.S.)
| |
Collapse
|
7
|
Khan TA, Al Nasr IS, Koko WS, Ma J, Eckert S, Brehm L, Ben Said R, Daoud I, Hanachi R, Rahali S, van de Sande WWJ, Ersfeld K, Schobert R, Biersack B. Evaluation of the Antiparasitic and Antifungal Activities of Synthetic Piperlongumine-Type Cinnamide Derivatives: Booster Effect by Halogen Substituents. ChemMedChem 2023; 18:e202300132. [PMID: 37021847 DOI: 10.1002/cmdc.202300132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 04/07/2023]
Abstract
A series of synthetic N-acylpyrrolidone and -piperidone derivatives of the natural alkaloid piperlongumine were prepared and tested for their activities against Leishmania major and Toxoplasma gondii parasites. Replacement of one of the aryl meta-methoxy groups by halogens such as chlorine, bromine and iodine led to distinctly increased antiparasitic activities. For instance, the new bromo- and iodo-substituted compounds 3 b/c and 4 b/c showed strong activity against L. major promastigotes (IC50 =4.5-5.8 μM). Their activities against L. major amastigotes were moderate. In addition, the new compounds 3 b, 3 c, and 4 a-c exhibited high activity against T. gondii parasites (IC50 =2.0-3.5 μM) with considerable selectivities when taking their effects on non-malignant Vero cells into account. Notable antitrypanosomal activity against Trypanosoma brucei was also found for 4 b. Antifungal activity against Madurella mycetomatis was observed for compound 4 c at higher doses. Quantitative structure-activity relationship (QSAR) studies were carried out, and docking calculations of test compounds bound to tubulin revealed binding differences between the 2-pyrrolidone and 2-piperidone derivatives. Microtubules-destabilizing effects were observed for 4 b in T. b. brucei cells.
Collapse
Affiliation(s)
- Tariq A Khan
- Department of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass, 51921, Saudi Arabia
| | - Ibrahim S Al Nasr
- Department of Biology, College of Science and Arts, Qassim University, Unaizah, 51911, Saudi Arabia
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, 51921, Saudi Arabia
| | - Waleed S Koko
- Department of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass, 51921, Saudi Arabia
| | - Jingyi Ma
- Department of Medical Microbiology and Infectious Disease, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam (The, Netherlands
| | - Simon Eckert
- Department of Genetics, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Lucas Brehm
- Department of Genetics, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Ridha Ben Said
- Laboratoire de Caractérisations, Applications et Modélisations des Matériaux, Faculté des Sciences de Tunis, Université Tunis El Manar, Tunis, Tunisia
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, P.O. Box 53, Ar Rass, 51921, Saudi Arabia
| | - Ismail Daoud
- University Mohamed Khider, Department of Matter Sciences, BP 145 RP, Biskra, 07000, Algeria
- Laboratory of Natural and Bio-active Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, 13000, Algeria
| | - Riadh Hanachi
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, P.O. Box 53, Ar Rass, 51921, Saudi Arabia
| | - Seyfeddine Rahali
- Department of Chemistry, College of Science and Arts at Ar Rass, Qassim University, P.O. Box 53, Ar Rass, 51921, Saudi Arabia
| | - Wendy W J van de Sande
- Department of Medical Microbiology and Infectious Disease, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam (The, Netherlands
| | - Klaus Ersfeld
- Department of Genetics, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| |
Collapse
|
8
|
Feng X, Wang J, Liu D, Shi H, Lu W, Shi D. Multicomponent Strategy to Pyrazolo[3,4- b]pyrrolo[3,4- d]pyridine Derivatives under Microwave Irradiation. J Org Chem 2023. [PMID: 37184949 DOI: 10.1021/acs.joc.2c03070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A novel three-component reaction has been established that allows a flexible and practical approach to pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives from phenylglyoxal, β-ketoamide, and 5-aminopyrazole with acetic acid as the solvent. Various dihydropyrazolo[3,4-b]pyrrolo[3,4-d]pyridin-6(3H)-one were isolated in moderate to good yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Xian Feng
- College of Pharmacy, Suzhou Vocational Health College, Suzhou 215009, China
| | - Jianjun Wang
- Rizhao Maritime Safety Administration, Rizhao 276800, China
| | - Dexiu Liu
- College of Pharmacy, Suzhou Vocational Health College, Suzhou 215009, China
| | - Hui Shi
- College of Pharmacy, Suzhou Vocational Health College, Suzhou 215009, China
| | - Wenjing Lu
- College of Pharmacy, Suzhou Vocational Health College, Suzhou 215009, China
| | - Daqing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
9
|
Yang Y, Xu Y, Qian S, Tang T, Wang K, Feng J, Ding R, Yao J, Huang J, Wang J. Systematic investigation of the multi-scale mechanisms of herbal medicine on treating ventricular remodeling: Theoretical and experimental studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154706. [PMID: 36796187 DOI: 10.1016/j.phymed.2023.154706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/17/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To explore the underlying molecule mechanism of herbal medicine in preventing ventricular remodeling (VR), we take a herbal formula that is clinically effective for preventing VR as an example, which composed of Pachyma hoelen Rumph, Atractylodes macrocephala Koidz., Cassia Twig and Licorice. Due to multi-components and multi-targets in herbal medicine, it is extremely difficult to systematically explain its mechanisms of action. METHODS An innovative systematic investigation framework which combines with pharmacokinetic screening, target fishing, network pharmacology, DeepDDI algorithm, computational chemistry, molecular thermodynamics, in vivo and in vitro experiments was performed for deciphering the underlying molecular mechanisms of herbal medicine for treating VR. RESULTS ADME screening and SysDT algorithm determined 75 potentially active compounds and 109 corresponding targets. Then, systematic analysis of networks reveals the crucial active ingredients and key targets in herbal medicine. Additionally, transcriptomic analysis identifies 33 key regulators during VR progression. Moreover, PPI network and biological function enrichment present four crucial signaling pathways, i.e. NF-κB and TNF, PI3K-AKT and C-type lectin receptor signaling pathways involved in VR. Besides, both molecular experiments at animal and cell levels reveal the beneficial effect of herbal medicine on preventing VR. Finally, MD simulations and binding free energy validate the reliability of drug-target interactions. CONCLUSION Our novelty is to build a systematic strategy which combines various theoretical methods combined with experimental approaches. This strategy provides a deep understanding for the study of molecular mechanisms of herbal medicine on treating diseases from systematic level, and offers a new idea for modern medicine to explore drug interventions for complex diseases as well.
Collapse
Affiliation(s)
- Yinfeng Yang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Yuan Xu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Shanna Qian
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Tongjuan Tang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Kangyong Wang
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jie Feng
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Ran Ding
- School of Medical Informatics Engineering, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Juan Yao
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China
| | - Jinling Huang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| | - Jinghui Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230012, China.
| |
Collapse
|
10
|
Mettai M, Daoud I, Mesli F, Kenouche S, Melkemi N, Kherachi R, Belkadi A. Molecular docking/dynamics simulations, MEP analysis, bioisosteric replacement and ADME/T prediction for identification of dual targets inhibitors of Parkinson's disease with novel scaffold. In Silico Pharmacol 2023; 11:3. [PMID: 36687301 PMCID: PMC9852416 DOI: 10.1007/s40203-023-00139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 01/04/2023] [Indexed: 01/20/2023] Open
Abstract
Monoamine oxidase B and Adenosine A2A receptors are used as key targets for Parkinson's disease. Recently, hMAO-B and hA2AR Dual-targets inhibitory potential of a novel series of Phenylxanthine derivatives has been established in experimental findings. Hence, the current study examines the interactions between 38 compounds of this series with hMAO-B and hA2AR targets using different molecular modeling techniques to investigate the binding mode and stability of the formed complexes. A molecular docking study revealed that the compounds L24 ((E)-3-(3-Chlorophenyl)-N-(4-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl) phenyl) acrylamide and L32 ((E)-3-(3-Chlorophenyl)-N-(3-(1,3-dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)phenyl)acrylamide) had a high affinity (S-score: -10.160 and -7.344 kcal/mol) with the pocket of hMAO-B and hA2AR targets respectively, and the stability of the studied complexes was confirmed during MD simulations. Also, the MEP maps of compounds 24 and 32 were used to identify the nucleophilic and electrophilic attack regions. Moreover, the bioisosteric replacement approach was successfully applied to design two new analogs of each compound with similar biological activities and low energy scores. Furthermore, ADME-T and Drug-likeness results revealed the promising pharmacokinetic properties and oral bioavailability of these compounds. Thus, compounds L24, L32, and their analogs can undergo further analysis and optimization in order to design new lead compounds with higher efficacy toward Parkinson's disease. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-023-00139-3.
Collapse
Affiliation(s)
- Merzaka Mettai
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ismail Daoud
- Department of Matter Sciences, University Mohamed Khider, BP 145 RP, 07000 Biskra, Algeria
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Fouzia Mesli
- Laboratory of Natural and Bio-actives Substances, Faculty of Science, Tlemcen University, P.O. Box 119, Tlemcen, Algeria
| | - Samir Kenouche
- Group of Modeling of Chemical Systems using Quantum Calculations, Applied Chemistry Laboratory, University of Mohamed Khider, 07000 Biskra, Algeria
| | - Nadjib Melkemi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Rania Kherachi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| | - Ahlem Belkadi
- Group of Computational and Pharmaceutical Chemistry LMCE Laboratory, University of Biskra, 07000 Biskra, Algeria
| |
Collapse
|
11
|
Jamil YM, Al-Azab FM, Al-Selwi NA, Alorini T, Al-Hakimi AN. Preparation, physicochemical characterization, molecular docking and biological activity of a novel schiff-base and organophosphorus schiff base with some transition metal(II) ions. MAIN GROUP CHEMISTRY 2023. [DOI: 10.3233/mgc-220101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The two synthesis of Schiff base SB (Indole-3-carboxalidene-1-phenylsemicarbazide) and organophosphorus Schiff base OPSB (Indole-3-carboxalidene diphenylphosphate-1-phenylsemicarbazide) have been prepared and characterized by elemental analyses, IR, 1H-NMR, 13C-NMR, UV–Vis and XRD. A series of complexes of the type [M(SB)2Cl2].2H2O and [M(OPSB)Cl.(H2O)2].Cl, where M = Cu(II), Ni(II) and Co(II) have been synthesized and the chemical structures of them were established by magnetic susceptibility, conductance measurements, elemental analyses, IR, UV–Vis. These results suggest that the metal complexes have octahedral geometry. X-ray powder diffraction analysis of ligands and SB complexes indicate that they are crystalline in nature and within nano range. The molecular docking of [Co(OPSB)Cl.(H2O)2].Cl is discussed using MOE software to understand the binding pattern of the investigated compound towards target proteins Bacillus subtilis (PDB ID: 2RHL), Staphylococcus aureus (PDB ID: 4URM), Escherichia coli (PDB ID: 4PRV), Pseudomonas aeruginosa (PDB ID: 4JVI). All compounds have been evaluated for their antimicrobial. The ligands and OPSB complexes showed high antioxidant activity.
Collapse
Affiliation(s)
- Yasmin M.S. Jamil
- Department of Chemistry, Faculty of Science, Sana’a University, Yemen
| | - Fathi M. Al-Azab
- Department of Chemistry, Faculty of Science, Sana’a University, Yemen
| | | | - Thamer Alorini
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ahmed N. Al-Hakimi
- Department of Chemistry, College of Sciences, Qassim University, Buraidah, Saudi Arabia
- Department of Chemistry, College of Sciences, Ibb University, Ibb, Yemen
| |
Collapse
|
12
|
Alorini T, Daoud I, Al-Hakimi AN, Alminderej F, Albadri AEAE. An experimental and theoretical investigation of antimicrobial and anticancer properties of some new Schiff base complexes. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04922-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Alorini T, Daoud I, Al-Hakimi AN, Alminderej F. Synthesis, Characterization, Anticancer Activity, and Molecular Docking Study of Some Metal Complexes with a New Schiff Base Ligand. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Synthesis, Structure and Stereochemistry of Dispirocompounds Based on Imidazothiazolotriazine and Pyrrolidineoxindole. Int J Mol Sci 2022; 23:ijms232213820. [PMID: 36430300 PMCID: PMC9699425 DOI: 10.3390/ijms232213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Methods for the synthesis of two types of isomeric dispirocompounds based on imidazothiazolotriazine and pyrrolidineoxindole, differing in the structure of imidazothiazolotriazine fragment, namely, linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine- 4',3″-indolines] and angular dispiro[imidazo[4,5-e]thiazolo[2,3-c][1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] were proposed. The first method relies on a 1,3-dipolar cycloaddition of azomethine ylides generated in situ from paraformaldehyde and N-alkylglycine derivatives to the corresponding oxindolylidene derivatives of imidazothiazolotriazine. The cycloaddition leads to a mixture of two diastereomers resulted from anti- and syn-approaches of azomethine ylide in approximately a 1:1 ratio, which were separated by column chromatography. Another method consists in rearrangement of linear dispiro[imidazo[4,5-e]thiazolo[3,2-b][1,2,4]triazine-6,3'-pyrrolidine-4',3″-indolines] into hitherto unavailable angular dispiro[imidazo[4,5-e]thiazolo[2,3-c]-[1,2,4]triazine-7,3'-pyrrolidine-4',3″-indolines] upon treatment with KOH. It was found that the anti-diastereomer of linear type underwent rearrangement into the isomeric angular syn-diastereomer, while the rearrangement of the linear syn-diastereomer gave the angular anti-diastereomer.
Collapse
|
15
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
16
|
Ganesh M, Suraj S. Expeditious entry into carbocyclic and heterocyclic spirooxindoles. Org Biomol Chem 2022; 20:5651-5693. [PMID: 35792116 DOI: 10.1039/d2ob00767c] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spirocyclic frameworks have attracted synthetic practitioners due to their unique three-dimensional assembly, improved metabolic stability, solubility, and increased molecular complexity with regard to planar architectures. A recent surge in the number of spirocyclic oxindoles inhibiting enzymes, moderating unique protein-protein interactions, modulating receptors and transporters is testament to their prevalence. Against this background, the construction of spirocyclic frameworks containing an oxindole moiety as a torsional switch via stereoselective methods is in great demand. Herein we present a summary of the past three years in the progress of metal, organic molecule, nanostructured particle mediated, and even uncatalyzed versions of the highly diastereo- and enantioselective pathways leading to oxindole spirocycles.
Collapse
Affiliation(s)
- Madhu Ganesh
- Sudhanva Technologies Private Limited, No. 7, Weavers Colony, Basavanapura, Bengaluru, Karnataka 560083, India.
| | - Shammy Suraj
- Department of Chemistry, Indian Institute of Technology, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
17
|
Toumi A, Boudriga S, Mandour YM, Mekki AA, Knorr M, Strohmann C, Kirchhoff JL, Sobeh M. Design of Novel Enantiopure Dispirooxindolopyrrolidine-Piperidones as Promising Candidates toward COVID-19: Asymmetric Synthesis, Crystal Structure and In Silico Studies. Molecules 2022; 27:molecules27123945. [PMID: 35745069 PMCID: PMC9228936 DOI: 10.3390/molecules27123945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Despite the effectiveness of COVID-19 vaccines, there is still an urgent need for discovering new anti-viral drugs to address the awful spread and transmission of the rapidly modifiable virus. In this study, the ability of a small library of enantiomerically pure spirooxindolopyrrolidine-grafted piperidones to inhibit the main protease of SARS-CoV-2 (Mpro) is evaluated. These spiroheterocycles were synthesized by 1,3-dipolar cycloaddition of various stabilized azomethine ylides with chiral dipolarophiles derived from N-[(S)-(-)-methylbenzyl]-4-piperidone. The absolute configuration of contiguous carbons was confirmed by a single crystal X-ray diffraction analysis. The binding of these compounds to SARS-CoV-2 Mpro was investigated using molecular docking and molecular dynamics simulation. Three compounds 4a, 4b and 4e exhibited stable binding modes interacting with the key subsites of the substrate-binding pocket of SARS-CoV-2 Mpro. The synthesized compounds represent potential leads for the development of novel inhibitors of SARS-CoV-2 main protease protein for COVID-19 treatment.
Collapse
Affiliation(s)
- Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia;
- Correspondence: (S.B.); (M.S.)
| | - Yasmine M. Mandour
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Ahmed A. Mekki
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt; (Y.M.M.); (A.A.M.)
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France;
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Jan-Lukas Kirchhoff
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (J.-L.K.)
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660-Hay MoulayRachid, Ben Guerir 43150, Morocco
- Correspondence: (S.B.); (M.S.)
| |
Collapse
|
18
|
Kumar B, Babu JN, Chowhan LR. Sustainable Synthesis of Highly Diastereoselective & Fluorescent Active Spirooxindoles Catalyzed by Copper Oxide Nanoparticle Immobilized on Microcrystalline Cellulose. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bhupender Kumar
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| | - J. Nagendra Babu
- Department of Chemistry School for Basic and Applied Sciences, Central University of Punjab, VPO Ghudda Bathinda Punjab India
| | - L. Raju Chowhan
- School for Applied Material Sciences Central University of Gujarat, Sector 30 Gandhinagar Gujarat India
| |
Collapse
|
19
|
Deepthi A, Thomas NV, Meenakshy CB, Leena SS. Stereoselective Synthesis of Dispirooxindoles Incorporating Pyrrolo[2,1-a]isoquinoline via [3+2] Cycloaddition of Azomethine Ylides with a Thiazolo[3,2-a]indole Dipolarophile. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1777-2423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractHighly regio- and stereoselective synthesis of dispiropyrrolo[2,1-a]isoquinoline-oxindoles have been developed by the one-pot three component reaction of isatins, 1,2,3,4-tetrahydroisoquinoline (THIQ), and a thiazolo[3,2-a]indole derivative. The reaction proceeds regioselectively through an exo-Re face approach of the in situ generated tetrahydroisoquinolium ylides towards the dipolarophile yielding the corresponding [3+2] cycloadducts in excellent yields and stereoselectivity.
Collapse
|
20
|
Chouchène N, Toumi A, Boudriga S, Edziri H, Sobeh M, Abdelfattah MAO, Askri M, Knorr M, Strohmann C, Brieger L, Soldera A. Antimicrobial Activity and DFT Studies of a Novel Set of Spiropyrrolidines Tethered with Thiochroman-4-one/Chroman-4-one Scaffolds. Molecules 2022; 27:582. [PMID: 35163847 PMCID: PMC8839074 DOI: 10.3390/molecules27030582] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/20/2021] [Indexed: 01/06/2023] Open
Abstract
A novel series of 14 spiropyrrolidines bearing thiochroman-4-one/chroman-4-one, and oxindole/acenaphthylene-1,2-dione moieties were synthesized and characterized by spectroscopic techniques, as well as by three X-ray diffraction studies, corroborating the stereochemistry. Quantum chemical calculations studies, using the DFT approach, were performed to rationalize the stereochemical outcome. These N-heterocycles were evaluated for their antibacterial and antifungal activities against some pathogenic organisms. Several compounds displayed moderate to excellent activity towards the screened microbe strains in the study compared to Amoxicillin (AMX), Ampicillin (AMP), and Amphotericin B. Furthermore, a structural activity relationship (SAR) was established considering the synthesized compounds. Pharmacokinetic studies reveal that these derivatives exhibit an acceptable predictive ADMET profile (Absorption, Distribution, Metabolism, Excretion and Toxicity) and good drug-likeness.
Collapse
Affiliation(s)
- Nourhène Chouchène
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Amani Toumi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Sarra Boudriga
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Hayet Edziri
- Laboratoire des Maladies Transmissibles et des Substances Biologiquement Actives, Faculté de Pharmacie, Monastir 5000, Tunisia;
| | - Mansour Sobeh
- AgroBioSciences Research, Mohammed VI Polytechnic University, Lot 660–Hay MoulayRachid, Ben Guerir 43150, Morocco;
| | | | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity (LR11ES39), Department of Chemistry, Faculty of Science of Monastir, University of Monastir, Monastir 5019, Tunisia; (N.C.); (A.T.); (M.A.)
| | - Michael Knorr
- Institut UTINAM-UMR CNRS 6213, Université Bourgogne Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Carsten Strohmann
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (L.B.)
| | - Lukas Brieger
- Faculty of Chemistry, Inorganic Chemistry, Technical University Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany; (C.S.); (L.B.)
| | - Armand Soldera
- Laboratory of Physical Chemistry of Matter, Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
21
|
Gazzeh H, Rouatbi F, Chniti S, Askri M, Knorr M, Strohmann C, Golz C, Lamsabhi AM. Chemoselective and diastereodivergent synthesis of new spirooxindolo-pyrrolizidines and pyrrolidines stemming from unsymmetrical 1,3-bis(arylidene)tetral-2-ones: a combined experimental and theoretical study. NEW J CHEM 2022. [DOI: 10.1039/d2nj03887k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An experimental and theoretical study of an efficient one-pot three-components cycloaddition reaction leading to pentacyclic dispiropyrrolizidin/pyrrolidinoxindoles endowed by four contiguous stereogenic centres with moderate to good yields was reported.
Collapse
Affiliation(s)
- Houda Gazzeh
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Fadwa Rouatbi
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Sami Chniti
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Moheddine Askri
- Laboratory of Heterocyclic Chemistry Natural Product and Reactivity/CHPNR, Department of Chemistry, Faculty of Science of Monastir, 5000 Monastir, Tunisia
| | - Michael Knorr
- Institute UTINAM-UMR CNRS 6213, Université de Franche-Comté, 16 Route de Gray, 25030 Besançon, France
| | - Carsten Strohmann
- Technische Universität Dortmund, Anorganische Chemie Otto-Hahn-Strasse 6, 44221 Dortmund, Germany
| | - Christopher Golz
- Georg-August-University Göttingen, Institute of Organic and Biomolecular Chemistry, Tammann-Straße 2, D-37077, Göttingen, Germany
| | - Al Mokhtar Lamsabhi
- Department of Chemistry, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madri, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
22
|
Antimicrobial Activity and In Silico Molecular Docking Studies of Pentacyclic Spiro[oxindole-2,3′-pyrrolidines] Tethered with Succinimide Scaffolds. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app12010360] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three-component cascade reactions of (E)-3-arylidene-1-methyl-pyrrolidine-2,5-diones, L-valine and various isatin derivatives are described. A series of 17 spiropyrrolidine derivatives with wide structural complexity and diversity have been thus obtained in moderate to excellent yields under mild reaction conditions. The structure and stereochemistry of these N-heterocyclic cycloadducts has been established by spectroscopic techniques and unambiguously confirmed by a single-crystal X-ray diffraction analysis performed on one derivative. UV-visible spectra have been recorded for all new compounds. Furthermore, the synthesized N-heterocyclic compounds have been screened for their in vitro antibacterial and antifungal activities. Several derivatives exhibited moderate to good activities, comparable to those of the known standard drugs Amphotericin B and Tetracycline. Structural activity relationships (SARs) and molecular docking of the most promising derivatives into the binding sites of glucosamine 6-phosphate synthase (GlcN6P) and methionyl-trna-synthetase (1PFV) were also established. Furthermore, pharmacokinetic studies indicate that the heterocycles exhibit acceptable predictive ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties and good drug ability.
Collapse
|
23
|
Mech D, Kurowska A, Trotsko N. The Bioactivity of Thiazolidin-4-Ones: A Short Review of the Most Recent Studies. Int J Mol Sci 2021; 22:11533. [PMID: 34768964 PMCID: PMC8584074 DOI: 10.3390/ijms222111533] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Thiazolidin-4-ones is an important heterocyclic ring system of a pharmacophore and a privileged scaffold in medicinal chemistry. This review is focused on the latest scientific reports regarding biological activities of thiazolidin-4-ones published in 2020 and 2021. The review covers recent information about antioxidant, anticancer, anti-inflammatory, analgesic, anticonvulsant, antidiabetic, antiparasitic, antimicrobial, antitubercular and antiviral properties of thiazolidin-4-ones. Additionally, the influence of different substituents in molecules on their biological activity was discussed in this paper. Thus, this study may help to optimize the structure of thiazolidin-4-one derivatives as more efficient drug agents. Presented information may be used as a practical hint for rational design of new small molecules with biological activity, especially among thiazolidin-4-ones.
Collapse
Affiliation(s)
| | | | - Nazar Trotsko
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (D.M.); (A.K.)
| |
Collapse
|