1
|
Wang C, Xiao J. Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes. Acc Chem Res 2025; 58:714-731. [PMID: 39982136 PMCID: PMC11883747 DOI: 10.1021/acs.accounts.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/01/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025]
Abstract
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O2. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.
Collapse
Affiliation(s)
- Chao Wang
- School
of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface
and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi’an 710119, China
| | - Jianliang Xiao
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
2
|
Xie Y, Li Z, Xu X, Jiang H, Chen K, Ou J, Liu K, Zhou Y, Luo K. Bis(2-butoxyethyl) Ether-Promoted O 2-Mediated Oxidation of Alkyl Aromatics to Ketones under Clean Conditions. Molecules 2024; 29:4909. [PMID: 39459277 PMCID: PMC11510689 DOI: 10.3390/molecules29204909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/11/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Conventional oxidation processes for alkyl aromatics to ketones employ oxidants that tend to generate harmful byproducts and cause severe equipment corrosion, ultimately creating critical environmental problems. Thus, in this study, a practical, efficient, and green method was developed for the synthesis of aromatic ketones by applying a bis(2-butoxyethyl) ether/O2 system under external catalyst-, additive-, and base-free conditions. This O2-mediated oxidation system can tolerate various functional groups and is suitable for large-scale synthesis. Diverse target ketones were prepared under clean conditions in moderate-to-high yields. The late-stage functionalization of drug derivatives with the corresponding ketones and one-pot sequential chemical conversions to ketone downstream products further broaden the application prospects of this approach.
Collapse
Affiliation(s)
- Yangyang Xie
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Zeping Li
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Xudong Xu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Han Jiang
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Keyi Chen
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Jinhua Ou
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Kaijian Liu
- Department of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China; (Y.X.); (Z.L.); (X.X.); (H.J.); (K.C.)
| | - Yihui Zhou
- Collaborative Innovation Center, Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Kejun Luo
- Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| |
Collapse
|
3
|
Wang XY, Lao HE, Zhang HY, Wang Y, Zhang Q, Wu JQ, Li YF, Zhu HJ, Mao JY, Pan Y. HOO • as the Chain Carrier for the Autocatalytic Photooxidation of Benzylic Alcohols. Molecules 2024; 29:3429. [PMID: 39065007 PMCID: PMC11279666 DOI: 10.3390/molecules29143429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
The oxidation of benzylic alcohols is an important transformation in modern organic synthesis. A plethora of photoredox protocols have been developed to achieve the aerobic oxidation of alcohols into carbonyls. Recently, several groups described that ultraviolet (UV) or purple light can initiate the aerobic oxidation of benzylic alcohols in the absence of an external catalyst, and depicted different mechanisms involving the photoinduction of •O2- as a critical reactive oxygen species (ROS). However, based on comprehensive mechanistic investigations, including control experiments, radical quenching experiments, EPR studies, UV-vis spectroscopy, kinetics studies, and density functional theory calculations (DFT), we elucidate here that HOO•, which is released via the H2O2 elimination of α-hydroxyl peroxyl radicals [ArCR(OH)OO•], serves as the real chain carrier for the autocatalytic photooxidation of benzylic alcohols. The mechanistic ambiguities depicted in the precedent literature are clarified, in terms of the crucial ROS and its evolution, the rate-limiting step, and the primary radical cascade. This work highlights the necessity of stricter mechanistic analyses on UV-driven oxidative reactions that involve aldehydes' (or ketones) generation.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Huan-E Lao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Hao-Yue Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Yi Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Y.W.); (Y.P.)
| | - Qing Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Jie-Qing Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Yu-Feng Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Hong-Jun Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Jian-You Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China; (X.-Y.W.); (H.-E.L.); (H.-Y.Z.); (Q.Z.); (J.-Q.W.)
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; (Y.W.); (Y.P.)
| |
Collapse
|
4
|
Xu M, Ou J, Luo K, Liang R, Liu J, Li N, Hu B, Liu K. External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules 2023; 28:molecules28073031. [PMID: 37049794 PMCID: PMC10096038 DOI: 10.3390/molecules28073031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023] Open
Abstract
We present an environment-friendly and highly efficient method for the oxidation of aromatic alcohols to carboxylic acids or ketones in air via light irradiation under external catalyst-, additive-, and base-free conditions. The photoreaction system exhibits a wide substrate scope and the potential for large-scale applications. Most of the desired products are easily obtained via recrystallization and separation from low-boiling reaction medium acetone in good yields, and the products can be subsequent directly transformed without further purification.
Collapse
Affiliation(s)
- Meng Xu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jinhua Ou
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| | - Kejun Luo
- Analytical Testing Center, Changsha Research Institute of Mining and Metallurgy Co., Ltd., Changsha 410012, China
| | - Rongtao Liang
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Jian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Ni Li
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Bonian Hu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Kaijian Liu
- School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
- Correspondence: (J.O.); (K.L.)
| |
Collapse
|
5
|
Li J, Wang K, Wu J, Zhang H, Chen Y, Liu Q, Xu J, Yi W. Elemental Sulfur‐Promoted Synthesis of 4‐Hydroxybenzophenones from
p
‐Quinone Methides under Metal‐Free Condition. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingping Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Kunpeng Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Jiayi Wu
- Shanghai Ganquan Foreign Languages Middle School 200065 Shanghai P. R. China
| | - Haoxiang Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Yan Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Qinglei Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| | - Junju Xu
- College of Tabacco Science Yunnan Agricultural University Key Laboratory of Sustainable Utilization of Plateau Characteristic Spice Plant Resources Education Department of Yunnan Province 650201 Kunming P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology Shanghai Institute of Technology 201418 Shanghai P. R. China
| |
Collapse
|
6
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|