1
|
Jiang N, Liu PZ, Pan ZZ, Wang SQ, Peng Q, Yin L. Asymmetric Synthesis of Trisubstituted Vicinal Diols through Copper(I)-Catalyzed Diastereoselective and Enantioselective Allylation of Ketones with Siloxypropadienes. Angew Chem Int Ed Engl 2024; 63:e202402195. [PMID: 38410020 DOI: 10.1002/anie.202402195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 02/28/2024]
Abstract
Chiral trisubstituted vicinal diols are a type of important organic compounds, serving as both common structure units in bioactive natural products and chiral auxiliaries in asymmetric synthesis. Herein, by using siloxypropadienes as the precursors of allyl copper(I) species, a copper(I)-catalyzed diastereoselective and enantioselective reductive allylation of ketones was achieved, providing both syn-diols and anti-diols in good to excellent enantioselectivity. DFT calculations show that cis-γ-siloxy-allyl copper species are generated favorably with either 1-TBSO-propadiene or 1-TIPSO-propadiene. Moreover, the steric difference of TBS group and TIPS group distinguishes the face selectivity of acetophenone, leading to syn-selectivity for 1-TBSO-propadiene and anti-selectivity for 1-TIPSO-propadiene. Easy transformations of the products were performed, demonstrating the synthetic utility of the present method. Moreover, one chiral diol prepared in the above transformations was used as a suitable organocatalyst for the catalytic asymmetric reductive self-coupling of aldimines generated in situ with B2(neo)2.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Pei-Zhi Liu
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhi-Zhou Pan
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Si-Qing Wang
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry and Tianjin Key Laboratory of Biosensing and Molecular Recognition College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Liang Yin
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
2
|
Corrigendum: Copper(I)-Catalyzed Asymmetric Allylation of Ketones with 2-Aza-1,4-Dienes. Angew Chem Int Ed Engl 2024; 63:e202319011. [PMID: 38224218 DOI: 10.1002/anie.202319011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
|
3
|
Collins S, Sieber JD. Development of regiodivergent asymmetric reductive coupling reactions of allenamides to access heteroatom-rich organic compounds. Chem Commun (Camb) 2023; 59:10087-10100. [PMID: 37529849 DOI: 10.1039/d3cc03013j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Organic compounds of biological importance often contain multiple stereogenic C-heteroatom functional groups (e.g. amines, alcohols, and ethers). As a result, synthetic methods to access such compounds in a reliable and stereoselective fashion are important. In this feature article, we present a strategy to enable the introduction of multiple C-heteroatom functional groups in a regiodivergent cross-coupling approach through the use of reductive coupling chemistry employing allenamides. Such processes allow for opportunities to access different heteroatom substitution patterns from the same starting materials.
Collapse
Affiliation(s)
- Stephen Collins
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| | - Joshua D Sieber
- Virginia Commonwealth University, Department of Chemistry 1001 West Main Street, Richmond, VA 23284, USA.
| |
Collapse
|
4
|
Collins S, Sieber JD. Studies Toward Improved Enantiocontrol in the Asymmetric Cu-Catalyzed Reductive Coupling of Ketones and Allenamides: 1,2-Aminoalcohol Synthesis. Org Lett 2023; 25:1425-1430. [PMID: 36847445 DOI: 10.1021/acs.orglett.3c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Herein, we report the development of an improved system for the Cu-catalyzed enantioselective reductive coupling of ketones and allenamides through the optimization of the allenamide to avoid an on-cycle rearrangement. High enantioselectivities could be obtained for a variety of ketones. Use of the acyclic allenamides described herein selectively generated anti-diastereomers in contrast to cyclic allenamides that were previously shown to favor the syn-form. A rationale for this change in diastereoselectivity is also presented.
Collapse
Affiliation(s)
- Stephen Collins
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States
| | - Joshua D Sieber
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-3028, United States
| |
Collapse
|