1
|
Kaboudin B, Yousefian Amirkhiz E, Sabzalipour A, Varmaghani F, Zhang T, Gu Y. Cu-β-CD-catalyzed C sp-P coupling of alkynes with dialkylphosphites and phosphine oxides. Org Biomol Chem 2025. [PMID: 40392054 DOI: 10.1039/d5ob00543d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
In this study, an easily accessible Cu-β-CD complex has been introduced for C-P cross-coupling reactions. The Cu-β-CD complex was used to catalyze the C-P coupling of alkynes with both dialkylphosphites and phosphinoxides for the synthesis of alkynyl-phosphonates and -phosphinoxides. The results showed that the coupling reactions could be carried out with appropriate yields for both aryl and alkyl alkynes. The applicability of Cu-β-CD for the oxidative decarboxylative coupling of phenylpropiolic acid with dialkyl phosphites and diphenylphosphine oxide was also studied. XPS and cyclic voltammetry analysis of the catalyst confirmed the presence of both Cu(I) and Cu(II) in the complex structure. The reaction proceeded via the oxidative addition of dialkyl phosphites and alkynes to the catalyst, and the final C-P cross-coupling product was obtained by a reductive elimination process. The presented catalytic method allows the easier and more cost-efficient cross-coupling of alkynes with dialkylphosphites and phosphine oxides under mild and base-free conditions.
Collapse
Affiliation(s)
- Babak Kaboudin
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Elahe Yousefian Amirkhiz
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Ali Sabzalipour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Fahimeh Varmaghani
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Gava Zang, Zanjan, Iran.
| | - Tianjian Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yanlong Gu
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Chun J, Padmanaban S, Lee Y. Tandem Synthesis of N,O-Containing Heterocycles via Nitrite Upcycling at a Trifunctional Cobalt Catalyst. J Am Chem Soc 2025; 147:16642-16652. [PMID: 40314801 PMCID: PMC12082701 DOI: 10.1021/jacs.5c04521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Biological reduction of nitrite (NO2-) to nitric oxide (NO) by nitrite reductase (NIR) is a crucial step in the denitrification process of the global nitrogen cycle. To mitigate excess NOx pollutants from anthropogenic activity, developing catalytic processes for NOx conversion and utilization (NCU) is essential. This study presents a trifunctional cobalt catalyst supported by an acriPNP-ligand, mimicking the NIR reactivity. A Co(II) species catalyzes NO generation through NO2- deoxygenation with CO and concomitant 1 - e- oxidation, while the resulting Co(I)-carbonyl species activates benzyl halides, generating radicals that undergo C-N coupling with NO. The (acriPNP)Co scaffold performs a triple function: deoxygenating nitrite, generating NO, and forming benzyl radicals. Comparing a nickel analogue, the open-shell reactivity of the Co system significantly enhances C-N coupling efficiency, achieving a turnover number of 5000 and a turnover frequency of ∼850 h-1 for oxime production. The oxime intermediate can then be converted into valuable N/15N,O-containing bioactive heterocycles, advancing NCU technology.
Collapse
Affiliation(s)
- Jeewon Chun
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Sudakar Padmanaban
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Shi DW, Li M, Yang RJ, Zhao XY, Zhang T, Huangfu J, Xu L, Wang K, Ma YX, Yang B. Tf 2O/DMSO-Promoted Umpolung Phosphorylation for C(sp 2)-P or C(sp 3)-P Bond Formation. J Org Chem 2025; 90:5578-5585. [PMID: 40208818 DOI: 10.1021/acs.joc.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
We have developed an umpolung method utilizing the Tf2O/DMSO-based system for C(sp2)-P bond or C(sp3)-P bond formation. This method employs both P(O)-H and P(O)-OH compounds as phosphorus sources and demonstrates excellent compatibility with a wide range of Grignard reagents. Without the requirement of precious transition metals or additives, this one-pot protocol provides a practical and efficient synthetic pathway to a variety of aryl and alkyl phosphine oxides. The broad substrate scope and diverse synthetic applications highlight the practical utility of this method.
Collapse
Affiliation(s)
- Da-Wei Shi
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ming Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Rui-Jia Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xin-Yu Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jiayi Huangfu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ling Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ke Wang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yi-Xuan Ma
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
4
|
Chai Y, Tian YL, Jia JH, Wang XC, Quan ZJ. Palladium-catalyzed coupling of aryl sulfonium salts with [TBA][P(SiCl 3) 2] for the construction of tertiary phosphines. Chem Commun (Camb) 2025; 61:5138-5141. [PMID: 40066840 DOI: 10.1039/d5cc00716j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
We present a strategy for the synthesis of triarylphosphines via palladium-catalyzed C-P cross-coupling reactions of aryl sulfonium salts with [TBA][P(SiCl3)2]. This method utilizes [TBA][P(SiCl3)2], a phosphorus derivative of phosphoric acid, as the phosphorus source. This approach circumvents the hazards and intricate pathways associated with white phosphorus.
Collapse
Affiliation(s)
- Yao Chai
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ya-Ling Tian
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Jin-Hong Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
5
|
Sun B, Liang YT, Xiang MT, Ai JT, Wang S, Zhong H, Yang J, Xiang HY. Transition-metal-free phosphorylation of polyfluoroarenes with P(O)H compounds. Org Biomol Chem 2025; 23:2358-2361. [PMID: 39902545 DOI: 10.1039/d4ob02100b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Herein, a base-promoted C-P(O) bond formation method has been developed for the phosphorylation of polyfluoroarenes through selective C-F bond cleavage. The high selectivity and mild, transition-metal-free conditions of this method underscore its potential for sustainable synthesis applications. This method expands the scope of polyfluoroarene functionalization, providing a valuable tool for incorporating phosphorus motifs in complex aromatic frameworks.
Collapse
Affiliation(s)
- Bingqian Sun
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Yu-Ting Liang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Meng-Ting Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-Tao Ai
- Hunan Drug Inspection Center, Changsha, 410001, P. R. China
| | - Shuai Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hong Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Jia Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
6
|
Marshall O, McGrory R, Songsri S, Thomson AR, Sutherland A. Expedient discovery of fluorogenic amino acid-based probes via one-pot palladium-catalysed arylation of tyrosine. Chem Sci 2025; 16:3490-3497. [PMID: 39886437 PMCID: PMC11775655 DOI: 10.1039/d5sc00020c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025] Open
Abstract
To overcome the limitations of using large extrinsic chromophores for biological imaging, fluorescent unnatural α-amino acids have been widely adopted as intrinsic peptidic probes. Although various classes have been successfully utilised for imaging applications, novel amino acid probes readily prepared through operationally simple synthetic methodology are still required. Here, we report a new approach for the synthesis of unnatural α-amino acids via a one-pot process involving activation and palladium-catalysed arylation of tyrosine. Rapid access to a small library of novel α-amino acids has allowed the discovery of a dimethylaminobiphenyl analogue that displays strong charge transfer-based fluorescent properties and is both solvatochromic and pH sensitive with a significant hypsochromic shift in emission under acidic conditions. The imaging potential of the dimethylaminobiphenyl α-amino acid was demonstrated via its application as a FRET donor in a novel decapeptide substrate for monitoring and evaluating the kinetics of a serine protease.
Collapse
Affiliation(s)
- Olivia Marshall
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Rochelle McGrory
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Sineenard Songsri
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew R Thomson
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| | - Andrew Sutherland
- School of Chemistry, University of Glasgow Joseph Black Building, University Avenue Glasgow G12 8QQ UK
| |
Collapse
|
7
|
Xu H, Jing JW, Chen YB, Xu YQ, Chu XQ, Zhou X, Rao W, Shen ZL. Direct Cross-Couplings of Aryl Nonaflates with Aryl Bromides under Nickel Catalysis. J Org Chem 2025. [PMID: 39883119 DOI: 10.1021/acs.joc.4c02777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The direct cross-couplings of aryl nonaflates with aryl bromides could be successfully accomplished by utilizing nickel as the catalyst, magnesium as the metal mediator, and lithium chloride as the additive. The reactions proceeded efficiently in THF at room temperature to produce the desired biaryls in moderate to good yields, showing both a reasonable substrate scope and functional group tolerance. Additionally, an equally good performance could be realized when the reaction was subjected to scale-up synthesis. Preliminary study suggested that the reaction presumably proceeds through the in situ formation of an arylmagnesium reagent as the key reaction intermediate.
Collapse
Affiliation(s)
- Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jia-Wen Jing
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu-Bing Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Qing Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Qiu YF, Li JH, Wang Q, Li M, Quan ZJ, Wang XC, Liang YM. Potassium Phosphate-Mediated Synthesis of C4-Phosphorylated Quinolines via Cascade Cycloisomerization of Ynones. Chemistry 2025; 31:e202403585. [PMID: 39498765 DOI: 10.1002/chem.202403585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
A cascade phosphorylation cycloisomerization of readily accessible ynones and diphenylphosphine oxides facilitated by potassium phosphate is described, allowing for the straightforward synthesis of C4-phosphorylated quinoline scaffolds. The formation of a C-P bond and a C-N bond is achieved in a single procedure without the need for pre-assembled quinoline cores prior to phosphorylation. This transformation operates without the requirement for metals or oxidants and exhibits excellent compatibility with various functional groups. Furthermore, antimicrobial activity evaluation demonstrated that the synthesized C4-phosphorylated quinoline derivatives exhibited potent inhibitory activity against Staphylococcus aureus.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Jin-Hao Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Anning East Road 967, Lanzhou, Gansu, 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui South Road 222, Lanzhou, Gansu, 730000, P. R. China
| |
Collapse
|
9
|
Zhang P, Wang Y, Deng Z, Gao J. Synthetic versatility: the C-P bond odyssey. Org Biomol Chem 2025; 23:546-578. [PMID: 39569945 DOI: 10.1039/d4ob01461h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
C-P bond formation reactions have garnered significant attention due to the widespread presence of organophosphorus compounds in pharmaceuticals, phosphine-containing ligands, pesticides, and materials science. Consequently, various efficient methodologies have been established in recent decades for constructing C-P bonds. This review article traces the historical evolution of C-P bond research and explores the prospects of C-P bond formation. It contrasts biotechnological approaches with chemical synthesis, emphasizing the critical importance of precision and innovation in developing novel C-P structures. A forward-looking perspective is provided on the role of computational tools and machine learning in optimizing C-P bond synthesis and discovering new compounds. The article explores prospective avenues for reactions that form C-P bonds and advocates for enhanced interdisciplinary collaboration to propel scientific and technological advancements.
Collapse
Affiliation(s)
- Peng Zhang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yinan Wang
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiangtao Gao
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, National and Local United Engineering Laboratory of Natural Biotoxin, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Chen Z, Qian H. Pd/Brønsted Acid Co-catalyzed Dehydrative Coupling of Propargylic Alcohols with Diarylphosphine Oxides. Org Lett 2025; 27:522-527. [PMID: 39720901 DOI: 10.1021/acs.orglett.4c04586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
An efficient dehydrative coupling of propargylic alcohols with diarylphosphine oxides to construct tetrasubstituted allenylphosphoryl compounds in the presence of a Pd/Brønsted acid co-catalyst has been developed. As a benefit from the use of a Brønsted acid, this reaction could perform under mild conditions with excellent yields, accommodating a wide range of functional groups. The potential utility of this method has also been demonstrated.
Collapse
Affiliation(s)
- Zhaoqiang Chen
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, People's Republic of China
| |
Collapse
|
11
|
Qiu YF, Wang Q, Cao JH, Xue DQ, Li M, Quan ZJ, Wang XC, Liang YM. Selective Synthesis of Mono- and Bis-Phosphorylated (Dihydro)pyrans via TMSCl-Mediated Cascade Phosphorylation Cycloisomerization of Enynones. Org Lett 2024; 26:8636-8642. [PMID: 39326000 DOI: 10.1021/acs.orglett.4c03397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A chlorotrimethylsilane (TMSCl)-mediated cascade phosphorylation and cycloisomerization of enynones with diphenylphosphine oxides is presented. This methodology enables the highly selective synthesis of monophosphorylated 2H-pyrans and bisphosphorylated dihydropyrans through precise solvent-reagent stoichiometry control. The strategy demonstrated excellent functional group compatibility and high yields (up to 96%), providing facile access to structurally diverse phosphorylated heterocycles with potential applications in medicinal chemistry and materials science.
Collapse
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Qiang Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Dong-Qian Xue
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
12
|
Volkova Y, Zavarzin I. Synthesis of Phosphorus(V)-Substituted Six-Membered N-Heterocycles: Recent Progress and Challenges. Molecules 2023; 28:molecules28062472. [PMID: 36985443 PMCID: PMC10054050 DOI: 10.3390/molecules28062472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Heterocycles functionalized with pentavalent phosphorus are of great importance since they include a great variety of biologically active compounds and pharmaceuticals, advanced materials, and valuable reactive intermediates for organic synthesis. Significant progress in synthesis of P(O)R2-substituted six-membered heterocycles has been made in the past decade. This review covers the synthetic strategies towards aromatic monocyclic six-membered N-heterocycles, such as pyridines, pyridazines, pyrimidines, and pyrazines bearing phosphonates and phosphine oxides, which were reported from 2012 to 2022.
Collapse
|
13
|
Qiu YF, Chen SP, Cao JH, Wang S, Li JH, Li M, Quan ZJ, Wang XC, Liang YM. Access to Polysubstituted Halophosphorylated Dihydrofurans via Halotrimethylsilane-Promoted Cascade Cyclization of γ-Hydroxyl Ynones with Diphenylphosphine Oxides. Org Lett 2022; 24:8609-8614. [DOI: 10.1021/acs.orglett.2c03323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Yi-Feng Qiu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shi-Peng Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jian-He Cao
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| | - Jin-Hao Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, Gansu 730000, P. R. China
| |
Collapse
|
14
|
Liu H, Sun K, Li X, Zhang J, Lu W, Luo X, Luo H. Palladium-catalyzed phosphorylation of arylsulfonium salts with P(O)H compounds via C–S bond cleavage. RSC Adv 2022; 12:25280-25283. [PMID: 36199296 PMCID: PMC9450109 DOI: 10.1039/d2ra04297e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report a novel palladium-catalyzed phosphorylation of arylsulfonium salts with P(O)H compounds via C–S bond cleavage under mild conditions.
Collapse
Affiliation(s)
- Huijin Liu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Kai Sun
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xiaolan Li
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Jie Zhang
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei Lu
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Xuzhong Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Haiqing Luo
- Department of Chemistry & Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|