1
|
Huang C, Zhang W, Liu Y, Zhang Z, Gong J, Wang X, Xue P, Feng L, Lu H. Pd/NBE-Catalyzed One-Pot Modular Synthesis of Tetrahydro-γ-carbolines. J Org Chem 2025; 90:5514-5522. [PMID: 40228234 DOI: 10.1021/acs.joc.5c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Tetrahydro-γ-carbolines are especially outstanding fused heterocyclic ring systems possessing significant biological activities in the central nervous system. Here, using commercially available NBE derivatives (NBEs), we report an efficient protocol for the one-pot modular synthesis of 4-substituted tetrahydro-γ-carbolines via Catellani/aza-Michael addition cascade from easily available 3-iodo-1-tosyl-1H-indole, aziridines and olefins. This approach exhibits a wide substrate scope, good yields, scalability, and potential extension toward the synthesis of Mebhydroline analogues.
Collapse
Affiliation(s)
- Chuantao Huang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Wenlin Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ying Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Zhixin Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Jun Gong
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Xiaobo Wang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Ping Xue
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Li Feng
- School of Public Health and Nursing, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
| | - Helin Lu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, P. R. China
- School of Health and Nursing, Wuchang University of Technology, Wuhan 430223, P. R. China
| |
Collapse
|
2
|
Li JW, Shi S, Chen XH, Huang MG, Ban YL, Zhang H, Liu YJ. Cobalt(II)-Catalyzed Selective C2-H Heck Reaction of Native (N-H) Indoles Enabled by Salicylaldehyde Ligand. J Org Chem 2025; 90:1126-1136. [PMID: 39772629 DOI: 10.1021/acs.joc.4c02735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Direct functionalization of native (N-H) indoles via C-H activation remains a challenge. Herein, we report a salicylaldehyde-promoted cobalt-catalyzed selective C2-H Heck reaction of native (N-H) indoles with both active and unactivated olefins in the presence of free N-H bonds. A series of structurally diverse C2-alkenylated native (N-H) indoles including natural product and drug derivatives were prepared directly and effectively without additional preprotection and deprotection procedures.
Collapse
Affiliation(s)
- Jia-Wei Li
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Shuai Shi
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Xiao-Hong Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Mao-Gui Huang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Yong-Liang Ban
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Hui Zhang
- Institute of Medicinal Development and Application for Aquatic Disease Control, Zhoukou Key Laboratory of Small Molecule Drug Development and Application, School of Chemistry and Chemical Engineering, Zhoukou Normal University, Zhoukou 466001, P. R. China
| | - Yue-Jin Liu
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
3
|
Gu K, Hall MT, Tucker ZD, Durling GM, Ashfeld BL. Catalyst-controlled directing group translocation in the site selective C-H functionalization of 3-carboxamide indoles and metallocarbenes. Nat Commun 2025; 16:97. [PMID: 39746950 PMCID: PMC11697359 DOI: 10.1038/s41467-024-55246-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Complementary methods toward the selective functionalization of indole and oxindole frameworks employing an alternative strategy in heteroaryl C-H functionalizations are presented herein. This work focuses on a catalyst-controlled, site selective C-H activation/functionalization of 3-acyl indoles, wherein an amide serves as a robust and versatile directing group capable of undergoing concomitant 1,2-acyl translocation/C-H functionalization in the presence of a RhI/AgI co-catalysts to provide the cross-coupled adducts in high yields. In contrast, the use of IrIII/AgI catalysts subverted the 1,2-acyl migration to afford the corresponding C2-functionalized products in good to excellent yields. A notable feature of the catalyst systems was the exceptional level of site selectivity observed in which the corresponding C-H functionalized indoles were obtained exclusively. Mechanistic experiments indicate a concerted 1,2-acyl migration step and indole metallation occurring through an electrophilic aromatic substitution process.
Collapse
Affiliation(s)
- Kuang Gu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mary T Hall
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Zachary D Tucker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Gregory M Durling
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
4
|
Zhao R, Lv X, Yang HR, Gao L, Zhou L, Fang S, Liu SL. Rhodium(III)-Catalyzed Regioselective C4 Alkylation of Indoles with Nitroalkenes. J Org Chem 2024; 89:17844-17849. [PMID: 39565168 DOI: 10.1021/acs.joc.4c02236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The Rh(III)-catalyzed indole C4-H bond addition to nitroalkenes is disclosed under mild and redox-neutral reaction conditions, offering straightforward access to various 4-(2-nitroalkyl)indoles (34 examples) with excellent chemo- and regioselectivity. Furthermore, late-stage diversifications and mechanistic studies were also performed.
Collapse
|
5
|
Zhang X, Liu G, Sun X, Wan LS, Zhou Y. A Metal-Free Direct Decarboxylative Fluoroacylation of Indole Carboxylic Acids with Fluorinated Acids. J Org Chem 2024; 89:14591-14595. [PMID: 39323110 DOI: 10.1021/acs.joc.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
A straightforward preparation of diversified fluorinated indol-3-yl ketones was developed by the direct decarboxylative fluoroacylation of indole carboxylic acids. The reaction could be performed on a gram scale under net conditions. Neither a metal catalyst nor an additive was employed. This methodology featured simple reaction conditions, high efficiency, exclusive selectivity, a broad substrate scope, and easy operation, which allowed it to meet the green chemistry requirement of the modern pharmaceutical industry. Control experiments confirmed that a radical process might be involved in the tandem decarboxylative fluoroacylation sequence.
Collapse
Affiliation(s)
- Xingxing Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guangyuan Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Sun
- Hebei Chemical and Pharmaceutical College, Shijiazhuang 050026, China
| | - Luo-Sheng Wan
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yirong Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
6
|
Mandal S, Sarkar P, Ghosh P. A macrocycle-based new organometallic nano-vessel towards sustainable C2-selective arylation of free indole in water. Org Biomol Chem 2024; 22:7438-7447. [PMID: 39188153 DOI: 10.1039/d4ob00886c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
C2-selectivity of unsubstituted indole over facile C3-substitution is attempted by utilizing the π-cavity of a nano-vessel made up of a palladium complex of an amino-ether heteroditopic macrocycle. Functional group tolerance (cyano, nitro, halo, ester, etc.), a broad substrate scope and outstanding selectivities with excellent yields (80-93%) of the desired products have been achieved in 12 h by maintaining all sustainable conditions like aqueous medium, recyclable catalyst, one-pot reaction, no external additives, mild temperature, etc. Interestingly, we observed that electron-deficient indole derivatives underwent the present transformation with marginally superior reactivity in comparison with electron-rich indole derivatives. This approach establishes a green pathway for selective C-C coupling employing a π-cavitand as a nano-reactor.
Collapse
Affiliation(s)
- Subham Mandal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| | - Piyali Sarkar
- Institute of Health Sciences, Presidency University, Second Campus, Plot No. DG/02/02, Premises No. 14-0358, Action Area-ID, New Town, Kolkata 700156, West Bengal, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S.C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
7
|
Jahan K, Sood M, Jain O, Sahoo SC, Bharatam PV. Directed regioselective arylation of imidazo[1,2- a]pyridine-3-carboxamides using Rh(III) catalysis. Org Biomol Chem 2024; 22:7121-7127. [PMID: 39155840 DOI: 10.1039/d4ob01166j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
In contrast to previously reported free-radical pathways to functionalize imidazo[1,2-a]pyridines at the C-5 centre, directing group approaches are rare. Herein, we demonstrate a rhodium(III) catalyzed efficient and regioselective strategy for directed C-5 functionalization of imidazo[1,2-a]pyridines using N-methoxyamide as a directing group. This methodology facilitates directed arylation without the necessity for pre-functionalization. It also allows for gram-scale synthesis and post-functionalization.
Collapse
Affiliation(s)
- Kousar Jahan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
- Lloyd Institute of Management and Technology, Plot No.-3, Knowledge Park-II, Greater Noida, Uttar Pradesh, India-201306
| | - Mehak Sood
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| | - Osheen Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| | - Subash C Sahoo
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh - 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, Punjab, India.
| |
Collapse
|
8
|
Shinde J, Suresh S, Kavala V, Yao CF. Pd(II)-catalyzed hydroarylations/hydroalkenylations of terminal alkynes: regioselective synthesis of allylic, homoallylic, and 1,3-diene systems. Chem Commun (Camb) 2024; 60:3790-3793. [PMID: 38456475 DOI: 10.1039/d4cc00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
A Pd-catalyzed regioselective hydroarylation of terminal alkynes containing a heteroatom has been developed via carbopalladation for the synthesis of allylic ethers, amines, and homoallylic alcohols. Moreover, hydroalkenylation of alkynes produces a variety of stereodefined 1,4-dienes with high regioselectivity. The important features of the present protocol are that it is highly regioselective, operationally rapid, and scalable with a huge substrate scope using only 3 mol% of PdCl2(PPh3)2 catalyst in the presence of a mild base KOAc.
Collapse
Affiliation(s)
- Jivan Shinde
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Sundaram Suresh
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Veerababurao Kavala
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| | - Ching-Fa Yao
- Department of Chemistry, National Taiwan Normal University, No, 88, Sec 4, Ting-Zhou Rd, Taipei-11677, Taiwan, Republic of China.
| |
Collapse
|
9
|
Paul A, Sengupta A, Sarkar B, Yadav S. Acetoxy Group-Directed Regioselective C2 Alkenylation of Indoles via Pd-Ag Bimetallic Catalysis. J Org Chem 2023; 88:14423-14434. [PMID: 37794781 DOI: 10.1021/acs.joc.3c01442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Regioselective C-H functionalizations of indoles reported to date with directing groups at C3 mainly rely on functional groups that are linked to the indole via C-C bonds. However, groups that are linked to the indole core by C-X linkages are also attractive due to the possibility of further modifications of the C-X bond. Herein, we report a 3-acetoxy directing group for the regioselective C2 alkenylation of indoles via a C-H activation-based, cross-dehydrogenative, oxidative Heck-type reaction. The reaction is catalyzed by Pd(II) and Ag(I) with stoichiometric Cu(II) as the oxidant and provides the 2-alkenylated indoles in yields of 52-84%. The reaction conditions are compatible with several functional groups at different positions as well as different N-protecting groups or free NH groups on the indole core. With respect to the alkene coupling partners, the reactions are successful with acrylates, vinyl sulfates, and phosphates. Specifically designed experiments, as well as density functional theory (DFT) computational studies, reveal that a heterodinuclear [Pd(μ-OAc)3Ag] bimetallic species is the actual catalyst responsible for the C-H alkenylation. A mechanistic path involving this catalytic species was also found to be favorable over other possible pathways for explaining the observed regioselectivity through DFT studies.
Collapse
Affiliation(s)
- Aditya Paul
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Arunava Sengupta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Bijan Sarkar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| | - Somnath Yadav
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM) Dhanbad, Jharkhand 826004, India
| |
Collapse
|
10
|
Milne N, Sáez-Sáez J, Nielsen AM, Dyekjaer JD, Rago D, Kristensen M, Wulff T, Borodina I. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives. ChemistryOpen 2023; 12:e202200266. [PMID: 36929157 PMCID: PMC10068768 DOI: 10.1002/open.202200266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
The indole scaffold is a recurring structure in multiple bioactive heterocycles and natural products. Substituted indoles like the amino acid tryptophan serve as a precursor for a wide range of natural products with pharmaceutical or agrochemical applications. Inspired by the versatility of these compounds, medicinal chemists have for decades exploited indole as a core structure in the drug discovery process. With the aim of tuning the properties of lead drug candidates, regioselective halogenation of the indole scaffold is a common strategy. However, chemical halogenation is generally expensive, has a poor atom economy, lacks regioselectivity, and generates hazardous waste streams. As an alternative, in this work we engineer the industrial workhorse Saccharomyces cerevisiae for the de novo production of halogenated tryptophan and tryptamine derivatives. Functional expression of bacterial tryptophan halogenases together with a partner flavin reductase and a tryptophan decarboxylase resulted in the production of halogenated tryptophan and tryptamine with chlorine or bromine. Furthermore, by combining tryptophan halogenases, production of di-halogenated molecules was also achieved. Overall, this works paves the road for the production of new-to-nature halogenated natural products in yeast.
Collapse
Affiliation(s)
- Nicholas Milne
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Javier Sáez-Sáez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annette Munch Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.,Octarine Bio ApS, Lersø Parkallé 42, 1. Sal, 2100, Copenhagen, Denmark
| | - Jane Dannow Dyekjaer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Daniela Rago
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Mette Kristensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tune Wulff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|