1
|
Bouda M, Hana GE, Xhili D, Sripada A, Bertke JA, Wolf C. Organocatalytic atroposelective fluorooxindole addition to coumarin Michael acceptors. Chem Commun (Camb) 2025; 61:7883-7886. [PMID: 40314408 PMCID: PMC12047072 DOI: 10.1039/d5cc01166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Organocatalytic atropisomeric synthesis with fluorinated oxindoles and 4-halo-3-nitrocoumarins gives congested structures displaying a Csp2-Csp3 chirality axis and an adjacent tetrasubstituted stereogenic carbon center with good yields, up to 97% ee and 41 : 1 dr. The scalable dehalogenative C-C bond formation is achieved under mild conditions with a commercially available urea catalyst.
Collapse
Affiliation(s)
- Maria Bouda
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Grace E Hana
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Dea Xhili
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Archita Sripada
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| |
Collapse
|
2
|
Formen JSSK, Wolf C. Optical Enantiodifferentiation of Chiral Nitriles. Org Lett 2024; 26:7644-7649. [PMID: 39229874 PMCID: PMC11406584 DOI: 10.1021/acs.orglett.4c02758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chiroptical sensing of nitriles is achieved with excellent functional group tolerance by hydrozirconation and subsequent transmetalation of the corresponding iminate to a chromophoric palladium complex. A one-pot workflow that uses the Schwartz reagent and [(η3-1-tert-butylindenyl)(μ-Cl)Pd]2 as sensor generates a palladium complex displaying red-shifted CD inductions and characteristic UV changes. These chiroptical responses are accurately correlated to the enantiomeric ratio and total concentration of the original nitrile.
Collapse
Affiliation(s)
- Jeffrey S S K Formen
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington D.C. 20057, United States
| |
Collapse
|
3
|
Yin X, Wang X, Song L, Zhang J, Wang X. Recent Progress in Synthesis of Alkyl Fluorinated Compounds with Multiple Contiguous Stereogenic Centers. Molecules 2024; 29:3677. [PMID: 39125080 PMCID: PMC11314154 DOI: 10.3390/molecules29153677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Organic fluorides are widely used in pharmaceuticals, agrochemicals, material sciences, and other fields due to the special physical and chemical properties of fluorine atoms. The synthesis of alkyl fluorinated compounds bearing multiple contiguous stereogenic centers is the most challenging research area in synthetic chemistry and has received extensive attention from chemists. This review summarized the important research progress in the field over the past decade, including asymmetric electrophilic fluorination and the asymmetric elaboration of fluorinated substrates (such as allylic alkylation reactions, hydrofunctionalization reactions, Mannich addition reactions, Michael addition reactions, aldol addition reactions, and miscellaneous reactions), with an emphasis on synthetic methodologies, substrate scopes, and reaction mechanisms.
Collapse
Affiliation(s)
- Xuemei Yin
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xihong Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Song
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Junxiong Zhang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| | - Xiaoling Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610041, China; (L.S.)
| |
Collapse
|
4
|
Li Z, Fan L, Liu G. Recent advances in stereoselective construction of fluorinated quaternary carbon centers from fluorinated compounds. Org Biomol Chem 2024; 22:4592-4612. [PMID: 38771632 DOI: 10.1039/d4ob00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
There are many fluorinated quaternary carbon structural units in pharmaceuticals and bioactive compounds. Organic chemists are interested in the stereoselective synthesis of fluorinated quaternary carbon structural units. Constructing a fluorinated quaternary carbon stereocenter can be achieved directly and efficiently by the asymmetric catalytic reaction of fluorinated compounds as substrates. This approach aims to construct fluorinated quaternary carbon stereocenters while diversifying the types of fluorinated compounds. This review introduces a series of reactions for synthesizing fluorinated quaternary carbon chiral centers through asymmetric organic catalysis and transition metal catalysis, including alkylation, arylation, Mannich, Michael addition, and allylation reactions. This work will contribute to the development of the synthesis of fluorinated quaternary carbon chiral center-containing compounds in the future.
Collapse
Affiliation(s)
- Zongwei Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China.
| | - Lin Fan
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China.
| | - Guodu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, College of Chemistry and Chemical Engineering, Inner Mongolia University, 24 Zhaojun Road, Hohhot 010030, China.
| |
Collapse
|
5
|
Bouda M, Bertke JA, Wolf C. Organocatalytic Asymmetric Conjugate Addition of Fluorooxindoles to Quinone Methides. J Org Chem 2024; 89:6100-6105. [PMID: 38619814 PMCID: PMC11077483 DOI: 10.1021/acs.joc.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Fluorooxindoles undergo asymmetric Michael addition to para-quinone methides under phase-transfer conditions with 10 mol% of a readily available cinchona alkaloid ammonium catalyst. This reaction affords sterically encumbered, multifunctional fluorinated organic compounds displaying two adjacent chirality centers with high yields, ee's and dr's.
Collapse
Affiliation(s)
- Maria Bouda
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Jeffery A. Bertke
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| | - Christian Wolf
- Chemistry Department, Georgetown University, Washington, D.C. 20057, United States
| |
Collapse
|
6
|
Griffiths CM, Franckevičius V. The Catalytic Asymmetric Allylic Alkylation of Acyclic Enolates for the Construction of Quaternary and Tetrasubstituted Stereogenic Centres. Chemistry 2024; 30:e202304289. [PMID: 38284328 DOI: 10.1002/chem.202304289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
To facilitate the discovery and development of new pharmaceuticals, the demand for novel stereofunctionalised building blocks has never been greater. Whilst molecules bearing quaternary and tetrasubstituted stereogenic centres are ideally suited to explore untapped areas of chemical space, the asymmetric construction ofsterically congested carbon centres remains a longstanding challenge in organic synthesis. The enantioselective assembly of acyclic stereogenic centres is even more demanding due to the need to restrict a much wider range of geometries and conformations of the intermediates involved. In this context, the catalytic asymmetric allylicalkylation (AAA) of acyclic prochiral nucleophiles, namely enolates, has become an indispensable tool to access a range of linearα-quaternary andα-tetrasubstituted carbonyl compounds. However, unlike the AAA of cyclic enolates with a fixed enolate geometry, to achieve high levels of stereocontrol in the AAA of acyclic enolates, the stereoselectivity of enolisation must be considered. The aim of this review is to offer acomprehensivediscussion of catalytic AAA reactions of acyclic prochiral enolates and their analogues to generate congested quaternary and tetrasubstituted chiral centres using metal, non-metal and dual catalysis, with particular focus given to the control of enolate geometry and its impact on the stereochemical outcome of the reaction.
Collapse
|
7
|
Yuan A, Steber SE, Xhili D, Nelson E, Wolf C. Enantioseparation and racemization of 3-fluorooxindoles. Chirality 2023; 35:619-624. [PMID: 37129272 PMCID: PMC10516598 DOI: 10.1002/chir.23572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Fluorinated oxindoles are frequently used building blocks in asymmetric synthesis and represent an important scaffold found in a variety of biologically relevant compounds. While it is understood that incorporation of fluorine atoms into organic molecules can improve their pharmacological properties, the impact on the configurational stability of chiral organofluorines is still underexplored. In this study, semipreparative HPLC enantioseparations of five oxindoles were carried out, and the resulting enantiomerically enriched solutions were used to investigate base promoted racemization kinetics at room temperature. It was found that incorporation of fluorine at the chiral center increases the configurational stability, while substitutions on the aromatic ring and at the lactam moiety also have significant effects on the rate of racemization, which generally follows reversible first-order reaction kinetics.
Collapse
Affiliation(s)
- Andi Yuan
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Sarah E Steber
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Dea Xhili
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Eryn Nelson
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, DC, USA
| |
Collapse
|