1
|
Kang X, Zhang X, Yang Q, Jing H, Wei Z, Liu Z, Chen Q, He L. Creation of Heterogeneous Single-Site Catalysts for RWGS Reaction: Ruthenium Complex on Porous Ionic Polymers via Electrostatic Interactions. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39988800 DOI: 10.1021/acsami.4c18539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Heterogeneous single-metal-site catalysts (HSMSCs) have been recognized as promising materials due to the advantages of evenly distributed active metal sites, easy separation, and recyclability. Herein, we construct a single-site Ru catalyst on porous ionic polymers (Ru/PIPs-IL3) via electrostatic interactions, which is a practical and useful strategy for synthesizing HSMSCs. The strong electrostatic interactions (ΔH = -73.4 and -83.5 kJ/mol for Ru-PPh4 and Ru-P(vBn)(vPh)3, respectively) between the quaternary phosphonium cations and oxygen anions of the cyclopentadienyl ligand in Ru species were both consolidated by DFT calculation and X-ray crystallography. The XPS, ATR-IR, HAADF-STEM, and EXAFS analyses and ion exchange experiment were employed to characterize the structure of Ru/PIPs-IL3. These results provide compelling evidence that PIPs-IL3 can interact with Shvo's catalyst in a manner analogous to that observed with quaternary phosphonium (PPh4Cl), thereby anchoring the Ru through electrostatic interactions. Such heterogeneous single-site Ru catalyst Ru/PIPs-IL3 exhibited a twofold activity compared to the homogeneous catalyst with a TONCO of up to 545 and an excellent 98.5% CO selectivity in the low-temperature reverse water-gas shift reaction.
Collapse
Affiliation(s)
- Xingsi Kang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuehua Zhang
- Yancheng Teachers University, Yancheng 224002, China
| | - Qiaodan Yang
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Huanwang Jing
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhihong Wei
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Zebang Liu
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Qiongyao Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry & Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences (CAS), Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Matsumoto H, Iwai T, Sawamura M, Miura Y. Continuous-Flow Catalysis Using Phosphine-Metal Complexes on Porous Polymers: Designing Ligands, Pores, and Reactors. Chempluschem 2024; 89:e202400039. [PMID: 38549362 DOI: 10.1002/cplu.202400039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Continuous-flow syntheses using immobilized catalysts can offer efficient chemical processes with easy separation and purification. Porous polymers have gained significant interests for their applications to catalytic systems in the field of organic chemistry. The porous polymers are recognized for their large surface area, high chemical stability, facile modulation of surface chemistry, and cost-effectiveness. It is crucial to immobilize transition-metal catalysts due to their difficult separation and high toxicity. Supported phosphine ligands represent a noteworthy system for the effective immobilization of metal catalysts and modulation of catalytic properties. Researchers have been actively pursuing strategies involving phosphine-metal complexes supported on porous polymers, aiming for high activities, durabilities, selectivities, and applicability to continuous-flow systems. This review provides a concise overview of phosphine-metal complexes supported on porous polymers for continuous-flow catalytic reactions. Polymer catalysts are categorized based on pore sizes, including micro-, meso-, and macroporous polymers. The characteristics of these porous polymers are explored concerning their efficiency in immobilized catalysis and continuous-flow systems.
Collapse
Affiliation(s)
- Hikaru Matsumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tomohiro Iwai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, 060-0810, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
3
|
Yu Z, Zhang S, Zhang L, Liu X, Jia Z, Li L, Ta N, Wang A, Liu W, Wang A, Zhang T. Suppressing Metal Leaching and Sintering in Hydroformylation Reaction by Modulating the Coordination of Rh Single Atoms with Reactants. J Am Chem Soc 2024; 146:11955-11967. [PMID: 38640231 DOI: 10.1021/jacs.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Hydroformylation reaction is one of the largest homogeneously catalyzed industrial processes yet suffers from difficulty and high cost in catalyst separation and recovery. Heterogeneous single-atom catalysts (SACs), on the other hand, have emerged as a promising alternative due to their high initial activity and reasonable regioselectivity. Nevertheless, the stability of SACs against metal aggregation and leaching during the reaction has rarely been addressed. Herein, we elucidate the mechanism of Rh aggregation and leaching by investigating the structural evolution of Rh1@silicalite-1 SAC in response to different adsorbates (CO, H2, alkene, and aldehydes) by using diffuse reflectance infrared Fourier transform spectroscopy, X-ray adsorption fine structure, and scanning transmission electron microscopy techniques and kinetic studies. It is discovered that the aggregation and leaching of Rh are induced by the strong adsorption of CO and aldehydes on Rh, as well as the reduction of Rh3+ by CO/H2 which weakens the binding of Rh with support. In contrast, alkene effectively counteracts this effect by the competitive adsorption on Rh atoms with CO/aldehyde, and the disintegration of Rh clusters. Based on these results, we propose a strategy to conduct the reaction under conditions of high alkene concentration, which proves to be able to stabilize Rh single atom against aggregation and/or leaching for more than 100 h time-on-stream.
Collapse
Affiliation(s)
- Zhounan Yu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxin Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Leilei Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhenghao Jia
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Na Ta
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - An Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
4
|
Zhang J, Kang X, Yan Y, Ding X, He L, Li Y. Cascade Electrocatalytic and Thermocatalytic Reduction of CO 2 to Propionaldehyde. Angew Chem Int Ed Engl 2024; 63:e202315777. [PMID: 38233351 DOI: 10.1002/anie.202315777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 01/19/2024]
Abstract
Electrochemical CO2 reduction can convert CO2 to value-added chemicals, but its selectivity toward C3+ products are very limited. One possible solution is to run the reactions in hybrid processes by coupling electrocatalysis with other catalytic routes. In this contribution, we report the cascade electrocatalytic and thermocatalytic reduction of CO2 to propionaldehyde. Using Cu(OH)2 nanowires as the precatalyst, CO2 /H2 O is reduced to concentrated C2 H4 , CO, and H2 gases in a zero-gap membrane electrode assembly (MEA) reactor. The thermochemical hydroformylation reaction is separately investigated with a series of rhodium-phosphine complexes. The best candidate is identified to be the one with the 1,4-bis(diphenylphosphino)butane diphosphine ligand, which exhibits a propionaldehyde turnover number of 1148 under a mild temperature and close-to-atmospheric pressure. By coupling and optimizing the upstream CO2 electroreduction and downstream hydroformylation reaction, we achieve a propionaldehyde selectivity of ~38 % and a total C3 oxygenate selectivity of 44 % based on reduced CO2 . These values represent a more than seven times improvement over the best prior electrochemical system alone or over two times improvement over other hybrid systems.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xingsi Kang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP, Lanzhou Institute of ChemicalPhysics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yuchen Yan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Xue Ding
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Suzhou Research Institute of LICP, Lanzhou Institute of ChemicalPhysics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yanguang Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, China
| |
Collapse
|