1
|
Zhao X, Ding H, Guo A, Zhong X, Zhou S, Wang G, Liu Y, Ishiwata A, Tanaka K, Cai H, Liu XW, Ding F. Zinc(ii)-mediated stereoselective construction of 1,2- cis 2-azido-2-deoxy glycosidic linkage: assembly of Acinetobacter baumannii K48 capsular pentasaccharide derivative. Chem Sci 2024; 15:12889-12899. [PMID: 39148796 PMCID: PMC11322977 DOI: 10.1039/d4sc03449j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/08/2024] [Indexed: 08/17/2024] Open
Abstract
The capsular polysaccharide (CPS) is a major virulence factor of the pathogenic Acinetobacter baumannii and a promising target for vaccine development. However, the synthesis of the 1,2-cis-2-amino-2-deoxyglycoside core of CPS remains challenging to date. Here we develop a highly α-selective ZnI2-mediated 1,2-cis 2-azido-2-deoxy chemical glycosylation strategy using 2-azido-2-deoxy glucosyl donors equipped with various 4,6-O-tethered groups. Among them the tetraisopropyldisiloxane (TIPDS)-protected 2-azido-2-deoxy-d-glucosyl donor afforded predominantly α-glycoside (α : β = >20 : 1) in maximum yield. This novel approach applies to a wide acceptor substrate scope, including various aliphatic alcohols, sugar alcohols, and natural products. We demonstrated the versatility and effectiveness of this strategy by the synthesis of A. baumannii K48 capsular pentasaccharide repeating fragments, employing the developed reaction as the key step for constructing the 1,2-cis 2-azido-2-deoxy glycosidic linkage. The reaction mechanism was explored with combined experimental variable-temperature NMR (VT-NMR) studies and mass spectroscopy (MS) analysis, and theoretical density functional theory calculations, which suggested the formation of covalent α-C1GlcN-iodide intermediate in equilibrium with separated oxocarbenium-counter ion pair, followed by an SN1-like α-nucleophilic attack most likely from separated ion pairs by the ZnI2-activated acceptor complex under the influence of the 2-azido gauche effect.
Collapse
Affiliation(s)
- Xiaoya Zhao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Han Ding
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Aoxin Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Xuemei Zhong
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Siai Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Guoqing Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Yuhua Liu
- School of Physics and Electronic Engineering, Guangzhou University Guangzhou 510006 China
| | - Akihiro Ishiwata
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
| | - Katsunori Tanaka
- RIKEN Cluster for Pioneering Research Wako Saitama 3510198 Japan
- Department of Chemical Science and Engineering, Tokyo Institute of Technology Tokyo Japan
| | - Hui Cai
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 637371 Singapore
| | - Feiqing Ding
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University Shenzhen 518107 China
| |
Collapse
|
2
|
Li L, Yin XC, Jiang YY, Xia YF, Wang X, Li J, Li H, Qin Y, Yang JS. Chemical Synthesis of a Branched Nonasaccharide Fragment from Helicobacter pylori Lipopolysaccharide. Org Lett 2024; 26:2103-2107. [PMID: 38443201 DOI: 10.1021/acs.orglett.4c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A chemical synthesis of a unique nanosaccharide fragment from Helicobacter pylori lipopolysaccharide was achieved via a convergent glycosylation method. Challenges involved in the synthesis include the highly stereoselective construction of β-3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) and two 1,2-cis-glycosidic linkages, as well as the formation of a branched 2,7-disubstituted heptose subunit. Hydrogen-bond mediated aglycone delivery strategy and benzoyl-directing remote participation effect were employed, respectively, for the efficient generation of the desired β-Kdo glycoside and 1,2-cis-α-l-fucoside/d-glucoside. Moreover, the key branched framework was successfully established through a [(7 + 1) + 1] assembly approach involving the stepwise glycosylation of the heptasaccharide alcohol with two monosaccharide donors. The synthesized 1 containing a propylamine linker at the reducing end can be covalently bound to a carrier protein for further immunological studies.
Collapse
Affiliation(s)
- Ling Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiao-Chen Yin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuan-Yuan Jiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yi-Fei Xia
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xia Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiao Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Li
- West China Marshall Research Center for Infectious Diseases, Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Duan L, Nie Q, Hu Y, Wang L, Guo K, Zhou Z, Song X, Tu Y, Liu H, Hansen T, Sun JS, Zhang Q. Stereoselective Synthesis of the O-antigen of A. baumannii ATCC 17961 Using Long-Range Levulinoyl Group Participation. Angew Chem Int Ed Engl 2023; 62:e202306971. [PMID: 37327196 DOI: 10.1002/anie.202306971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
Herein, we described the first synthesis of the pentasaccharide and decasaccharide of the A. baumannii ATCC 17961 O-antigen for developing a synthetic carbohydrate-based vaccine against A. baumannii infection. The efficient synthesis of the rare sugar 2,3-diacetamido-glucuronate was achieved using our recently introduced organocatalytic glycosylation method. We found, for the first time, that long-range levulinoyl group participation via a hydrogen bond can result in a significantly improved β-selectivity in glycosylations. This solves the stereoselectivity problem of highly branched galactose acceptors. The proposed mechanism was supported by control experiments and DFT computations. Benefiting from the long-range levulinoyl group participation strategy, the pentasaccharide donor and acceptor were obtained via an efficient [2+1+2] one-pot glycosylation method and were used for the target decasaccharide synthesis.
Collapse
Affiliation(s)
- Liangshen Duan
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Qin Nie
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yongxin Hu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Liming Wang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Kaiyan Guo
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Zhuoyi Zhou
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Xu Song
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Yuanhong Tu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Hui Liu
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| | - Thomas Hansen
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam (The, Netherlands
| | - Jian-Song Sun
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Qingju Zhang
- National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nan Chang, 330022, China
| |
Collapse
|
4
|
Li D, Wang J, Wang X, Qiao Z, Wang L, Wang P, Song N, Li M. β-Glycosylations with 2-Deoxy-2-(2,4-dinitrobenzenesulfonyl)-amino-glucosyl/galactosyl Selenoglycosides: Assembly of Partially N-Acetylated β-(1 → 6)-Oligoglucosaminosides. J Org Chem 2023; 88:9004-9025. [PMID: 37306475 DOI: 10.1021/acs.joc.3c00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
An efficient protocol has been established for β-glycosylations with 2-deoxy-2-(2,4-dinitrobenzenesulfonyl)amino (2dDNsNH)-glucopyranosyl/galactopyranosyl selenoglycosides using PhSeCl/AgOTf as an activating system. The reaction features highly β-selective glycosylation with a wide range of alcohol acceptors that are either sterically hindered or poorly nucleophilic. Thioglycoside- and selenoglycoside-based alcohols prove to be viable nucleophiles, opening up new opportunities for one-pot construction of oligosaccharides. The power of this approach is highlighted by the efficient assembly of tri-, hexa-, and nonasaccharides composed of β-(1 → 6)-glucosaminosyl residues based on one-pot preparation of a triglucosaminosyl thioglycoside with DNs, phthaloyl, and 2,2,2-trichloroethoxycarbonyl as the protecting groups of amino groups. These glycans are potential antigens for developing glycoconjugate vaccines against microbial infections.
Collapse
Affiliation(s)
- Dongwei Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Jianjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xianyang Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Zhi Qiao
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Lingjun Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Wang
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ni Song
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ming Li
- Molecular Synthesis Center, Key Laboratory of Marine Medicine, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
5
|
Bhetuwal BR, Wu F, Acharya PP, Thapa P, Zhu J. Synthesis of 2-Amino-2-deoxy-β-d-mannosides via Stereoselective Anomeric O-Alkylation of 2 N,3 O-Oxazolidinone-Protected d-Mannosamine: Synthesis of the Trisaccharide Repeating Unit of Streptococcus pneumoniae 19F Polysaccharide. Org Lett 2023; 25:4214-4218. [PMID: 37257021 PMCID: PMC10330879 DOI: 10.1021/acs.orglett.3c01564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cesium carbonate-mediated stereoselective anomeric O-alkylation of a 2N,3O-oxazolidinone-protected d-mannosamine with sugar-derived primary or secondary alkyl triflates afforded the corresponding 2-amino-2-deoxy-β-d-mannosides in moderate to good yields and excellent stereoselectivity. The oxazolidinone ring can be opened with aqueous alkali hydroxide to liberate the amine functionality. This method has been successfully applied to the synthesis of the trisaccharide repeating unit of Streptococcus pneumoniae 19F polysaccharide.
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Padam Prasad Acharya
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Prakash Thapa
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 W. Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
6
|
Njeri DK, Ragains JR. Total Synthesis of a Pentasaccharide O-Glycan from Acinetobacter baumannii. European J Org Chem 2022; 2022:e202201261. [PMID: 36876192 PMCID: PMC9983622 DOI: 10.1002/ejoc.202201261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Indexed: 12/23/2022]
Abstract
Acinetobacter baumannii is a Gram-negative bacteria associated with drug resistance and infection in healthcare settings. An understanding of both the biological roles and antigenicity of surface molecules of this organism may provide an important step in the prevention and treatment of infection through vaccination or the development of monoclonal antibodies. With this in mind, we have performed the multistep synthesis of a conjugation-ready pentasaccharide O-glycan from A. baumannii with a longest linear synthetic sequence of 19 steps. This target is particularly relevant due to its role in both fitness and virulence across an apparently broad range of clinically relevant strains. Synthetic challenges include formulating an effective protecting group scheme as well as the installation of a particularly difficult glycosidic linkage between the anomeric position of a 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid and the 4-position of D-galactose.
Collapse
Affiliation(s)
- Dancan K Njeri
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| | - Justin R Ragains
- Department of Chemistry, Louisiana State University, 232 Choppin Hall, Baton Rouge, LA 70803
| |
Collapse
|
7
|
Hou Z, Wang J, Zhang X, Wang P, Song N, Li M. Synthesis of a conjugable hexasaccharide corresponding to the capsular polysaccharide of Campylobacter jejuni strain BH0142. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Zhou XY, Li LX, Zhang Z, Duan SC, Huang YW, Luo YY, Mu XD, Chen ZW, Qin Y, Hu J, Yin J, Yang JS. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from Acinetobacter baumannii Lipopolysaccharide. Angew Chem Int Ed Engl 2022; 61:e202204420. [PMID: 35543248 DOI: 10.1002/anie.202204420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Indexed: 02/05/2023]
Abstract
Acinetobacter baumannii is currently posing a serious threat to global health. Lipopolysaccharide (LPS) is a potent virulence factor of pathogenic Gram-negative bacteria. To explore the antigenic properties of A. baumannii LPS, four Kdo-containing inner core glycans from A. baumannii strain ATCC 17904 were synthesized. A flexible and divergent method based on the use of the orthogonally substituted α-Kdo-(2→5)-Kdo disaccharides was developed. Selective removal of different protecting groups in these key precursors and elongation of sugar chain via α-stereocontrolled coupling with 5,7-O-di-tert-butylsilylene or 5-O-benzoyl protected Kdo thioglycosides and 2-azido-2-deoxyglucosyl thioglycoside allowed efficient assembly of the target molecules. Glycan microarray analysis of sera from infected patients revealed that the 4,5-branched Kdo trimer was a potential antigenic epitope, which is attractive for further immunological research to develop carbohydrate vaccines against A. baumannii.
Collapse
Affiliation(s)
- Xian-Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling-Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shi-Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying-Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yi-Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiao-Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Jin-Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
9
|
Zhou X, Li L, Zhang Z, Duan S, Huang Y, Luo Y, Mu X, Chen Z, Qin Y, Hu J, Yin J, Yang J. Chemical Synthesis and Antigenic Evaluation of Inner Core Oligosaccharides from
Acinetobacter baumannii
Lipopolysaccharide. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xian‐Yang Zhou
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ling‐Xin Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Zhen Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Shi‐Chao Duan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Ying‐Wen Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yi‐Yang Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Xiao‐Dong Mu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Zhi‐Wei Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Yong Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education School of Biotechnology Wuxi School of Medicine Jiangnan University Wuxi 214122 China
| | - Jin‐Song Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy State Key Laboratory of Biotherapy West China Hospital Sichuan University Chengdu 610041 China
| |
Collapse
|
10
|
Bhetuwal BR, Wu F, Meng S, Zhu J. Stereoselective Synthesis of 2-Azido-2-deoxy-β-d-mannosides via Cs 2CO 3-Mediated Anomeric O-Alkylation with Primary Triflates: Synthesis of a Tetrasaccharide Fragment of Micrococcus luteus Teichuronic Acid. J Org Chem 2020; 85:16196-16206. [PMID: 33201716 DOI: 10.1021/acs.joc.0c02370] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cesium carbonate-mediated anomeric O-alkylation of various protected 2-azido-2-deoxy-d-mannoses with primary triflate electrophiles afforded corresponding 2-azido-2-deoxy-β-mannosides in good yields and excellent anomeric selectivity. In addition, 1,3-dibromo-5,5-dimethylhydantoin was found to be the optimal oxidant for preparation of those 2-azido-2-deoxy-d-mannoses from their corresponding thioglycosides. The utilization of this method was demonstrated in the synthesis of a tetrasaccharide fragment of Micrococcus luteus teichuronic acid containing N-acetyl-β-d-mannosaminuronic acid (ManNAcA).
Collapse
Affiliation(s)
- Bishwa Raj Bhetuwal
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Fenglang Wu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Shuai Meng
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Jianglong Zhu
- Department of Chemistry and Biochemistry and School of Green Chemistry and Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
11
|
Wang X, Wang P, Li D, Li M. 2,4-Dinitrobenzenesulfonamide-Directed S N2-Type Displacement Reaction Enables Synthesis of β-d-Glycosaminosides. Org Lett 2019; 21:2402-2407. [PMID: 30900906 DOI: 10.1021/acs.orglett.9b00688] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient protocol to construct β-d-gluco-/galactosaminosyl linkages was established using nonparticipating and strong electron-withdrawing C-2-2,4-dinitrobenzenesulfonamide (DNsNH)-directed SN2-like glycosylation of glycosyl ortho-hexynylbenzoates. The reaction is applicable to a wide range of O-, N-, and C-nucleophiles and features convenient conversion of DNsNH into AcNH in high yield under mild conditions. Oligomerization-ready trisaccharide, composed of β-d-(1→3)-glucosamino residues, has been achieved, setting a solid foundation for the synthesis of oligosaccharides associated with Neisseria meningitidis capsular polysaccharide.
Collapse
Affiliation(s)
- Xianyang Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Peng Wang
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Dongwei Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| | - Ming Li
- School of Medicine and Pharmacy , Ocean University of China , Key Laboratory of Marine Medicine, Chinese Ministry of Education, Qingdao 266003 China.,Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 China
| |
Collapse
|
12
|
Zhong YL, Cleator E, Liu Z, Yin J, Morris WJ, Alam M, Bishop B, Dumas AM, Edwards J, Goodyear A, Mullens P, Song ZJ, Shevlin M, Thaisrivongs DA, Li H, Sherer EC, Cohen RD, Yin J, Tan L, Yasuda N, Limanto J, Davies A, Campos KR. Highly Diastereoselective Synthesis of a HCV NS5B Nucleoside Polymerase Inhibitor. J Org Chem 2018; 84:4780-4795. [PMID: 30475616 DOI: 10.1021/acs.joc.8b02500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An asymmetric synthesis of HCV NS5B nucleoside polymerase inhibitor (1) is described. This novel route features several remarkably diastereoselective and high-yielding transformations, including construction of the all-carbon quaternary stereogenic center at C-2 via a thermodynamic aldol reaction. A subsequent glycosylation reaction with activated uracil via C-1 phosphate and installation of the cyclic phosphate group using an achiral phosphorus(III) reagent followed by oxidation provides 1.
Collapse
Affiliation(s)
- Yong-Li Zhong
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Ed Cleator
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Zhijian Liu
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Jianguo Yin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - William J Morris
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Mahbub Alam
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Brian Bishop
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Aaron M Dumas
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - John Edwards
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Adrian Goodyear
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Peter Mullens
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Zhiguo Jake Song
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Michael Shevlin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - David A Thaisrivongs
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Hongming Li
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Edward C Sherer
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Ryan D Cohen
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Jingjun Yin
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Lushi Tan
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Nobuyoshi Yasuda
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - John Limanto
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Antony Davies
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| | - Kevin R Campos
- Process Research and Development , Merck & Co., Inc. , P.O. Box 2000, Rahway , New Jersey 07065 , United States
| |
Collapse
|
13
|
Affiliation(s)
- Wanxiang Zhao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jianwei Sun
- Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
14
|
Synthesis and anticoagulation studies of “short-armed” fucosylated chondroitin sulfate glycoclusters. Carbohydr Res 2018; 467:45-51. [DOI: 10.1016/j.carres.2018.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/27/2018] [Accepted: 07/27/2018] [Indexed: 11/20/2022]
|
15
|
Wang L, Hashidoko Y, Hashimoto M. Cosolvent-Promoted O-Benzylation with Silver(I) Oxide: Synthesis of 1'-Benzylated Sucrose Derivatives, Mechanistic Studies, and Scope Investigation. J Org Chem 2016; 81:4464-74. [PMID: 27149197 DOI: 10.1021/acs.joc.6b00144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A cosolvent-promoted O-benzylation strategy with Ag2O was developed. The cosolvent consisting of CH2Cl2 and n-hexane can not only improve the reaction solubility for carbohydrates but also increase the benzylation efficiency. The formation of byproducts is greatly inhibited in the developed method. This method is simple, mild, and highly effective, and numerous 1'-benzylated sucrose derivatives were prepared including a photoreactive (trifluoromethyl)phenyldiazirine-based sucrose. The mechanisms of benzylation with primary and secondary benzyl bromides were also elaborated. Furthermore, the application scope with alcohols, glucose, and ribose derivatives was investigated.
Collapse
Affiliation(s)
- Lei Wang
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Yasuyuki Hashidoko
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| | - Makoto Hashimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University , Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
| |
Collapse
|
16
|
Giguère D. Surface polysaccharides from Acinetobacter baumannii : Structures and syntheses. Carbohydr Res 2015; 418:29-43. [DOI: 10.1016/j.carres.2015.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/31/2022]
|