1
|
Pavun A, Niess R, Scheibel LA, Seidl M, Hohloch S. A mesoionic carbene stabilized nickel(II) hydroxide complex: a facile precursor for C-H activation chemistry. Dalton Trans 2024; 53:2749-2761. [PMID: 38226674 DOI: 10.1039/d3dt03746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We report the synthesis of a new nickel(II) hydroxide complex 2 supported by a rigid, tridentate triazolylidene-carbazolid ligand. The complex can be accessed in high yields following a simple and stepwise extraction protocol using dichloromethane and aqueous ammonium chloride followed by aqeous sodium hydroxide solution. We found that complex 2 is highly basic, undergoing various deprotonation/desilylation reactions with E-H and C-H acidic and silylated compounds. In this context we synthesized a variety of novel, functionalized nickel(II) complexes with trimethylsilylolate (3), trityl sulfide (4), tosyl amide (5), azido (6), pyridine (7), acetylide (8, 9), fluoroarene (10 & 11) and enolate (12) ligands. We furthermore found that 2 reacts with malonic acid dimethyl ester in a knoevennagel-type condensation reaction, giving access to a new enolate ligand in complex 13, consisting of two malonic acid units. Furthermore, complex 2 reacts with acetonitrile to form the cyanido complex 14. The formation of complexes 13 and 14 is particularly interesting, as they underline the potential of complex 2 in both C-C bond formation and cleavage reactions.
Collapse
Affiliation(s)
- Anna Pavun
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Raffael Niess
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Lucas A Scheibel
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Michael Seidl
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Matsuyama T, Yatabe T, Yabe T, Yamaguchi K. Decarbonylation of 1,2-Diketones to Diaryl Ketones via Oxidative Addition Enabled by an Electron-Deficient Au–Pd Nanoparticle Catalyst. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Takehiro Matsuyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
3
|
Yin F, Peng W, Wang C, Qu L, Chen X, Kong L, Wang X. Rhodium(III)‐ Catalyzed Cleavage of C‐C Bond and C‐H Bond Cascaded by Michael Addition for the Conversion of α‐Hydroxy Ketones to Phthalides and Isocoumarins. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fucheng Yin
- China Pharmaceutical University School of Traditional Chinese Pharmacy Nanjing CHINA
| | - Wan Peng
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Cheng Wang
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Lailiang Qu
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Xinye Chen
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Lingyi Kong
- China Pharmaceutical University State Key Laboratory of Natural Medicines Nanjing CHINA
| | - Xiaobing Wang
- China Pharmaceutical University Department of Natural Medicinal Chemistry No. 24Tong Jia Xiang 210009 Nanjing CHINA
| |
Collapse
|
4
|
Yang F, Xu S, Fan H, Zhao X, Zhang X. One‐Pot Synthesis of 2‐Aminobenzophenones from 2‐Alkynyl Arylazides Catalyzed by Pd and Cu Precursors. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Shijie Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Hui Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xuechun Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Xiaoxiang Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
5
|
Cha H, Chai JY, Kim HB, Chi DY. Synthesis of aliphatic α-ketoamides from α-substituted methyl ketones via a Cu-catalyzed aerobic oxidative amidation. Org Biomol Chem 2021; 19:4320-4326. [PMID: 33904536 DOI: 10.1039/d1ob00129a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
α-Ketoamides are an important key functional group and have been used as versatile and valuable intermediates and synthons in a variety of functional group transformations. Synthetic methods for making aryl α-ketoamides as drug candidates have been greatly improved through metal-catalyzed aerobic oxidative amidations. However, the preparation of alkyl α-ketoamides through metal-catalyzed aerobic oxidative amidations has not been reported because generating α-ketoamides from aliphatic ketones with two α-carbons theoretically provides two distinct α-ketoamides. Our strategy is to activate the α-carbon by introducing an N-substituent at one of the two α-positions. The key to this strategy is how heterocyclic compounds such as triazoles and imidazoles affect the selectivity of the synthesis of the alkyl α-ketoamides. From this basic concept, and by optimizing the reaction and elucidating the mechanism of the synthesis of aryl α-ketoamides via a copper-catalyzed aerobic oxidative amidation, we prepared fourteen aliphatic α-ketoamides in high yields (48-84%).
Collapse
Affiliation(s)
- Hyojin Cha
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Korea.
| | - Jin Young Chai
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Korea.
| | - Hyeong Baik Kim
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Korea.
| | - Dae Yoon Chi
- Department of Chemistry, Sogang University, 35 Baekbeomro Mapogu, Seoul 04107, Korea.
| |
Collapse
|
6
|
Wang D, Shi Z, Zhang X, Cui Z, Wang Q. O 2-Mediated transformation of 9-phenanthrenol: an approach to the synthesis of phenanthrenyl ketal and 9-fluorenones. Org Chem Front 2021. [DOI: 10.1039/d0qo01234c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report the first example for O2-mediated oxidation of 9-phenanthrenol to phenanthrenyl ketal under basic conditions, followed by transformation to 9-fluorenones.
Collapse
Affiliation(s)
- Dongwei Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Zuosen Shi
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Xueyou Zhang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| | - Zhanchen Cui
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Qifeng Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC)
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
| |
Collapse
|
7
|
Tarasenko MV, Presnukhina SI, Baikov SV, Shetnev AA. Synthesis and Evaluation of Antibacterial Activity of 1,2,4-Oxadiazole-Containing Biphenylcarboxylic Acids. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Tong Z, Tang Z, Au CT, Qiu R. Nickel-Catalyzed Decarbonyloxidation of 3-Aryl Benzofuran-2( 3H)-ones to 2-Hydroxybenzophenones. J Org Chem 2020; 85:8533-8543. [PMID: 32483961 DOI: 10.1021/acs.joc.0c00858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a protocol to facilitate the nickel-catalyzed decarbonyloxidation of 3-aryl benzofuran-2(3H)-ones to 2-hydroxybenzophenones under mild conditions, which is an efficient approach for the decarbonyloxidation of lactones in organic synthesis. A diverse range of substrates can undergo C(O)-O/C(O)-C bond cleavage to generate the target products in good yields. These 2-hydroxybenzophenones can be converted into a variety of compounds via reactions such as esterification, cyclization, and reduction.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Chak-Tong Au
- College of Chemistry and Chemical Engineering, Institute of Engineering, Xiangtan 411100, P.R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
9
|
Zervas E, Matsouki N, Kyriakopoulos G, Poulopoulos S, Ioannides T, Katsaounou P. Transfer of metals in the liquids of electronic cigarettes. Inhal Toxicol 2020; 32:240-248. [PMID: 32538207 DOI: 10.1080/08958378.2020.1776801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objectives: E-cigarettes are electronic devices containing a liquid that usually consists of a mixture of glycerol, propylene glycol and nicotine, with or without flavorings, in various concentrations. A vapor or aerosol is produced, and inhaled from the user, when this liquid is heated by a heating coil. This work examines the impact of three parameters (e-liquid composition, nicotine content and air flow) on the transfer of metals' from the heating coils to the e-liquids.Materials and methods: A distillation unit was used, where 20ml of an e-liquid were boiled with two commercial heating elements. Four e-liquids: 100% Propylene Glycol, 100% Glycerol, 50/50% Propylene Glycol/Glycerol, 33.3/33.3/33.3% Propylene Glycol/Glycerol/Water, three nicotine contents: 0, 0.4 and 0.8% per volume and three air flows: 0, 0.5 and 1.0 L/min, were used. The liquids were analyzed by Total Reflection X-Ray Fluorescence spectrometry to determine the final content of metals.Results and discussion: Five metals, Fe, Ni, Cu, Zn, and Pb, were found to be transferred from the heating coils to the e-liquids. The transfer of those metals increases with air flow and nicotine concentration, while e-liquid composition also has a significant impact. Glycerol enhances the transfer of metals compared to propylene glycol and their mixtures. The boiling temperature of the e-liquids increases significantly the transfer of metals in the e-liquids.Conclusions: There is a transfer of metals from the heating coils to the e-liquids. This transfer depends on the e-liquid composition and on the boiling temperature.
Collapse
Affiliation(s)
- Efthimios Zervas
- School of Science and Technology, Hellenic Open University, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Niki Matsouki
- School of Science and Technology, Hellenic Open University, Patras, Greece.,Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Grigorios Kyriakopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Stavros Poulopoulos
- Department of Chemical and Materials Engineering Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Theophilos Ioannides
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patra, Greece
| | - Paraskevi Katsaounou
- Department of Critical Care and Pulmonary Services, "Evangelismos" Hospital, Athens Medical School, University of Athens, Athens, Greece
| |
Collapse
|
10
|
Kreibich M, Gemander M, Peter D, Yadav DB, de Koning CB, Fernandes MA, Green IR, van Otterlo WAL, Brückner R. 6,7‐Benzotropolone Syntheses Based on Ring‐Closing Metatheses and Four‐Electron Oxidations. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael Kreibich
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Albertstraße 21 79104 Freiburg Germany
| | - Manuel Gemander
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Albertstraße 21 79104 Freiburg Germany
| | - David Peter
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Albertstraße 21 79104 Freiburg Germany
| | - Dharmendra B. Yadav
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand PO Wits 2050 Johannesburg South Africa
| | - Charles B. de Koning
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand PO Wits 2050 Johannesburg South Africa
| | - Manuel A. Fernandes
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand PO Wits 2050 Johannesburg South Africa
| | - Ivan R. Green
- Department of Chemistry and Polymer Science Stellenbosch University Private Bag X1, Matieland 7602 Stellenbosch Western Cape South Africa
| | - Willem A. L. van Otterlo
- Molecular Sciences Institute School of Chemistry University of the Witwatersrand PO Wits 2050 Johannesburg South Africa
- Department of Chemistry and Polymer Science Stellenbosch University Private Bag X1, Matieland 7602 Stellenbosch Western Cape South Africa
| | - Reinhard Brückner
- Institut für Organische Chemie Albert‐Ludwigs‐Universität Albertstraße 21 79104 Freiburg Germany
| |
Collapse
|
11
|
Zhu R, Chatzidimitriou A, Liu B, Kerwood DJ, Bond JQ. Understanding the Origin of Maleic Anhydride Selectivity during the Oxidative Scission of Levulinic Acid. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ran Zhu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Anargyros Chatzidimitriou
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Bowei Liu
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Deborah J. Kerwood
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Jesse Q. Bond
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
12
|
Zhou J, Huang-Fu X, Huang YY, Cao CN, Han J, Zhao XL, Chen XD. Metal–Organic Framework Based on Heptanuclear Cu–O Clusters and Its Application as a Recyclable Photocatalyst for Stepwise Selective Catalysis. Inorg Chem 2019; 59:254-263. [DOI: 10.1021/acs.inorgchem.9b02084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jie Zhou
- Jiangsu Key Laboratory
of Biofunctional Materials and Jiangsu Collaborative Innovation Center
of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xu Huang-Fu
- Jiangsu Key Laboratory
of Biofunctional Materials and Jiangsu Collaborative Innovation Center
of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yang-Ying Huang
- Jiangsu Key Laboratory
of Biofunctional Materials and Jiangsu Collaborative Innovation Center
of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chu-Ning Cao
- Jiangsu Key Laboratory
of Biofunctional Materials and Jiangsu Collaborative Innovation Center
of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Han
- School of Science & Technology, The Open University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Xiao-Li Zhao
- Shanghai Key Laboratory
of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai 200062, China
| | - Xu-Dong Chen
- Jiangsu Key Laboratory
of Biofunctional Materials and Jiangsu Collaborative Innovation Center
of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
13
|
Tian X, Ren Y, Cheng X, Lu W. Aerobic Oxidative C(CO)–C Bond Cleavage under Catalyst‐Free and Additive‐Free Conditions. ChemistrySelect 2019. [DOI: 10.1002/slct.201903197] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xinzhe Tian
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
- College of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000, Gansu P. R. China
| | - Yun‐Lai Ren
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| | - Xinqiang Cheng
- School of Chemical Engineering & PharmaceuticsHenan University of Science and Technology, Luoyang Henan 471003 P. R. China
| | - Weiwei Lu
- College of ScienceHenan Agricultural University, Zhengzhou Henan 450002 P.R. China
| |
Collapse
|
14
|
Chen X, Chen Z, So CM. Exploration of Aryl Phosphates in Palladium-Catalyzed Mono-α-arylation of Aryl and Heteroaryl Ketones. J Org Chem 2019; 84:6337-6346. [DOI: 10.1021/acs.joc.9b00669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangmeng Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Zicong Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chau Ming So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, People’s Republic of China
| |
Collapse
|
15
|
Weber B, Brandes B, Powroznik D, Kluge R, Csuk R. An efficient and robust synthesis of amorfrutin A. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Chang FR, Li PS, Huang Liu R, Hu HC, Hwang TL, Lee JC, Chen SL, Wu YC, Cheng YB. Bioactive Phenolic Components from the Twigs of Atalantia buxifolia. JOURNAL OF NATURAL PRODUCTS 2018; 81:1534-1539. [PMID: 29975532 DOI: 10.1021/acs.jnatprod.7b00938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Five new compounds named buxifoximes A-C (1-3), buxifobenzoate (4), and 7- O-(7'-peroxygeranyl) coumarin (5), together with 25 known compounds, were identified from the twigs of Atalantia buxifolia. Compounds 1-3 are unique secondary metabolites with the aldoxime functionality. The structures of the isolates were determined on the basis of spectroscopic data analyses, and the structure of 1 was confirmed by an X-ray single-crystallographic analysis. With respect to bioactivity, antidengue virus, anti-inflammatory, and cytotoxic activities of all purified compounds were tested and evaluated. Compound 1 showed a significant anti-inflammatory effect by inhibiting superoxide anion generation with an IC50 value of 4.8 ± 0.7 μM. Among the acridone alkaloids, 5-hydroxy- N-methylseverifoline (23) exhibited antidengue activity (IC50 = 5.3 ± 0.4 μM), and atalaphyllinine (20) demonstrated cytotoxicity (IC50 = 6.5 ± 0.0 μM) against the human liver cancer cell line, HepG2.
Collapse
Affiliation(s)
- Fang-Rong Chang
- National Research Institute of Chinese Medicine , Taipei 112 , Taiwan
| | | | - Rosa Huang Liu
- School of Nutrition, College of Health Care and Management , Chung Shan Medical University , Taichung 402 , Taiwan
| | | | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine , Chang Gung University , Taoyuan 333 , Taiwan
| | | | | | - Yang-Chang Wu
- Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| | - Yuan-Bin Cheng
- Department of Medical Research , Kaohsiung Medical University Hospital , Kaohsiung 807 , Taiwan
| |
Collapse
|
17
|
Wang X, He D, Huang Y, Fan Q, Wu W, Jiang H. Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon-Carbon Bond Cleavage Using Molecular Oxygen. J Org Chem 2018; 83:5458-5466. [PMID: 29687708 DOI: 10.1021/acs.joc.8b00378] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A copper-catalyzed process for the synthesis of substituted quinazolines from benzonitriles and 2-ethynylanilines using molecular oxygen (O2) as sole oxidant is described. The mild catalytic system enabled the effective cleavage of the C-C triple bond and construction of new C-N and C-C bonds in one operation. Furthermore, the compound N, N-dimethyl-4-(2-(4-(trifluoromethyl)phenyl)quinazolin-4-yl)aniline (3dj) exhibited obvious aggregation-induced emission phenomenon, and the fluorescence quantum yield (ΦF,film) and lifetime (τfilm) were measured to be 45.5% and 5.8 ns in thin films state, respectively.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Dandan He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yubing Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Qihang Fan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Wanqing Wu
- State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China.,Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
18
|
Deng L, Huang B, Liu Y. Copper(ii)-mediated, carbon degradation-based amidation of phenylacetic acids toward N-substituted benzamides. Org Biomol Chem 2018; 16:1552-1556. [DOI: 10.1039/c8ob00064f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The carbon degradation-based amidation of phenylacetic acids with aryl amides has been realized in the presence of Cu(OAc)2, which provides a practical route in the synthesis of N-aryl secondary benzamides.
Collapse
Affiliation(s)
- Leiling Deng
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P.R. China
| | - Bin Huang
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P.R. China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
- P.R. China
| |
Collapse
|
19
|
Zhang C, Liu M, Ding M, Xie H, Zhang F. A Tandem Oxidative Annulation Strategy for the Synthesis of Tetracyclic 3-Spirooxindole Benzofuranones. Org Lett 2017. [DOI: 10.1021/acs.orglett.7b01374] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chunxia Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Min Liu
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Mingruo Ding
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Hao Xie
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science & Green Pharmaceutical Collaborative Innovation Center of Yangtze River Delta Region, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
20
|
Wang M, Lu J, Li L, Li H, Liu H, Wang F. Oxidative C(OH) C bond cleavage of secondary alcohols to acids over a copper catalyst with molecular oxygen as the oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2017.02.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Liu H, Wang M, Li H, Luo N, Xu S, Wang F. New protocol of copper-catalyzed oxidative C(CO) C bond cleavage of aryl and aliphatic ketones to organic acids using O2 as the terminal oxidant. J Catal 2017. [DOI: 10.1016/j.jcat.2016.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Wang X, Zhang CY, Tu HY, Zhang AD. Facile Access to Multiaryl-1H-pyrrol-2(3H)-ones by Copper/TEMPO-Mediated Cascade Annulation of Diarylethanones with Primary Amines and Mechanistic Insight. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xing Wang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road 430079 Wuhan Hubei China
| | - Chen-Yang Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road 430079 Wuhan Hubei China
| | - Hai-Yang Tu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road 430079 Wuhan Hubei China
| | - Ai-Dong Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education; College of Chemistry; Central China Normal University; 152 Luoyu Road 430079 Wuhan Hubei China
| |
Collapse
|