1
|
Depienne S, Fontenelle C, Light ME, Hecke KV, Linclau B. De Novo Enantioselective Synthesis of Hexafluorinated d-Glucose. J Org Chem 2024; 89:14291-14304. [PMID: 39269924 PMCID: PMC11460824 DOI: 10.1021/acs.joc.4c01724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
We report a de novo enantioselective synthesis of 2,3,4-trideoxy-2,2,3,3,4,4-hexafluoro-d-glycero-hexopyranose (hexafluorinated d-glucose), an iconic polar hydrophobic glycomimetic. The 12-step synthesis features robust and reproducible chemistry and was achieved by incorporating an asymmetric dihydroxylation step to install the stereogenic center with excellent enantioselectivity (95:5 er). Virtual enantiopurity (>99.5% ee) was further reached using a simple crystallization procedure and the absolute confirmation was ascertained by X-ray analysis. The synthetic route also allowed access to the novel hexafluorinated heptose derivative 2,3,4-trideoxy-2,2,3,3,4,4-hexafluoro-l-threo-heptopyranose.
Collapse
Affiliation(s)
- Sébastien Depienne
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, 9000 Ghent, Belgium
| | - Clément
Q. Fontenelle
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Mark E. Light
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Kristof Van Hecke
- Department
of Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Bruno Linclau
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, 9000 Ghent, Belgium
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| |
Collapse
|
2
|
Shishmarev D, Fontenelle CQ, Linclau B, Kuprov I, Kuchel PW. Quantitative Analysis of 2D EXSY NMR Spectra of Strongly Coupled Spin Systems in Transmembrane Exchange. Chembiochem 2024; 25:e202300597. [PMID: 37984465 PMCID: PMC10952724 DOI: 10.1002/cbic.202300597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Solute translocation by membrane transport proteins is a vital biological process that can be tracked, on the sub-second timescale, using nuclear magnetic resonance (NMR). Fluorinated substrate analogues facilitate such studies because of high sensitivity of 19 F NMR and absence of background signals. Accurate extraction of translocation rate constants requires precise quantification of NMR signal intensities. This becomes complicated in the presence of J-couplings, cross-correlations, and nuclear Overhauser effects (NOE) that alter signal integrals through mechanisms unrelated to translocation. Geminal difluorinated motifs introduce strong and hard-to-quantify contributions from non-exchange effects, the nuanced nature of which makes them hard to integrate into data analysis methodologies. With analytical expressions not being available, numerical least squares fitting of theoretical models to 2D spectra emerges as the preferred quantification approach. For large spin systems with simultaneous coherent evolution, cross-relaxation, cross-correlation, conformational exchange, and membrane translocation between compartments with different viscosities, the only available simulation framework is Spinach. In this study, we demonstrate GLUT-1 dependent membrane transport of two model sugars featuring CF2 and CF2 CF2 fluorination motifs, with precise determination of translocation rate constants enabled by numerical fitting of 2D EXSY spectra. For spin systems and kinetic networks of this complexity, this was not previously tractable.
Collapse
Affiliation(s)
- Dmitry Shishmarev
- The Australian National UniversityJohn Curtin School of Medical Research2601CanberraACTAustralia
- The Australian National UniversityResearch School of Biology2601CanberraACTAustralia
| | | | - Bruno Linclau
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
- Department of Organic and Macromolecular ChemistryGhent UniversityCampus Sterre, Krijgslaan 281-S49000GhentBelgium
| | - Ilya Kuprov
- University of SouthamptonDepartment of ChemistrySO17 1BJSouthamptonUK
| | - Philip W. Kuchel
- The University of SydneySchool of Life and Environmental Sciences2006SydneyNSWAustralia
| |
Collapse
|
3
|
Wei X, Wang P, Liu F, Ye X, Xiong D. Drug Discovery Based on Fluorine-Containing Glycomimetics. Molecules 2023; 28:6641. [PMID: 37764416 PMCID: PMC10536126 DOI: 10.3390/molecules28186641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Glycomimetics, which are synthetic molecules designed to mimic the structures and functions of natural carbohydrates, have been developed to overcome the limitations associated with natural carbohydrates. The fluorination of carbohydrates has emerged as a promising solution to dramatically enhance the metabolic stability, bioavailability, and protein-binding affinity of natural carbohydrates. In this review, the fluorination methods used to prepare the fluorinated carbohydrates, the effects of fluorination on the physical, chemical, and biological characteristics of natural sugars, and the biological activities of fluorinated sugars are presented.
Collapse
Affiliation(s)
- Xingxing Wei
- Department of Pharmacy, Changzhi Medical College, No. 161, Jiefang East Street, Changzhi 046012, China
| | - Pengyu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Fen Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Xinshan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| | - Decai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. No. 38, Beijing 100191, China (F.L.); (X.Y.)
| |
Collapse
|
4
|
Abstract
Fluorinated carbohydrates have found many applications in the glycosciences. Typically, these contain fluorination at a single position. There are not many applications involving polyfluorinated carbohydrates, here defined as monosaccharides in which more than one carbon has at least one fluorine substituent directly attached to it, with the notable exception of their use as mechanism-based inhibitors. The increasing attention to carbohydrate physical properties, especially around lipophilicity, has resulted in a surge of interest for this class of compounds. This review covers the considerable body of work toward the synthesis of polyfluorinated hexoses, pentoses, ketosugars, and aminosugars including sialic acids and nucleosides. An overview of the current state of the art of their glycosidation is also provided.
Collapse
Affiliation(s)
- Kler Huonnic
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
| | - Bruno Linclau
- School
of Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, U.K.
- Department
of Organic and Macromolecular Chemistry, Ghent University, Campus Sterre, Krijgslaan 281-S4, Ghent, 9000, Belgium
| |
Collapse
|
5
|
Fujiwara Y, Sato K, Yamada Y, Hanamoto T. Synthesis and reactions of (E)-β-(bromotetrafluoroethyl)vinyl diphenyl sulfonium triflate. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Linclau B, Ardá A, Reichardt NC, Sollogoub M, Unione L, Vincent SP, Jiménez-Barbero J. Fluorinated carbohydrates as chemical probes for molecular recognition studies. Current status and perspectives. Chem Soc Rev 2021; 49:3863-3888. [PMID: 32520059 DOI: 10.1039/c9cs00099b] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review provides an extensive summary of the effects of carbohydrate fluorination with regard to changes in physical, chemical and biological properties with respect to regular saccharides. The specific structural, conformational, stability, reactivity and interaction features of fluorinated sugars are described, as well as their applications as probes and in chemical biology.
Collapse
Affiliation(s)
- Bruno Linclau
- School of Chemistry, University of Southampton, Highfield, Southampton SO171BJ, UK
| | - Ana Ardá
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain.
| | | | - Matthieu Sollogoub
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 place Jussieu, 75005 Paris, France
| | - Luca Unione
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Stéphane P Vincent
- Department of Chemistry, Laboratory of Bio-organic Chemistry, University of Namur (UNamur), B-5000 Namur, Belgium
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain. and Ikerbasque, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain and Department of Organic Chemistry II, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
7
|
Hevey R. The Role of Fluorine in Glycomimetic Drug Design. Chemistry 2020; 27:2240-2253. [DOI: 10.1002/chem.202003135] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Rachel Hevey
- Department of Pharmaceutical Sciences University of Basel, Pharmazentrum Klingelbergstrasse 50 4056 Basel Switzerland
| |
Collapse
|
8
|
Keenan T, Parmeggiani F, Malassis J, Fontenelle CQ, Vendeville JB, Offen W, Both P, Huang K, Marchesi A, Heyam A, Young C, Charnock SJ, Davies GJ, Linclau B, Flitsch SL, Fascione MA. Profiling Substrate Promiscuity of Wild-Type Sugar Kinases for Multi-fluorinated Monosaccharides. Cell Chem Biol 2020; 27:1199-1206.e5. [DOI: 10.1016/j.chembiol.2020.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/20/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
|
9
|
Malassis J, Vendeville JB, Nguyen QH, Boujon M, Gaignard-Gaillard Q, Light M, Linclau B. Synthesis of vicinal dideoxy-difluorinated galactoses. Org Biomol Chem 2019; 17:5331-5340. [DOI: 10.1039/c9ob00707e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three novel dideoxydifluorinated galactose derivatives are described.
Collapse
Affiliation(s)
- Julien Malassis
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | | | - Qui-Hien Nguyen
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | - Marie Boujon
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | | | - Mark Light
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| | - Bruno Linclau
- School of Chemistry
- University of Southampton
- Southampton SO171BJ
- UK
| |
Collapse
|
10
|
Uhrig ML, Lantaño B, Postigo A. Synthetic strategies for fluorination of carbohydrates. Org Biomol Chem 2019; 17:5173-5189. [DOI: 10.1039/c9ob00405j] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different synthetic strategies for accomplishing regio- and stereoselective fluorinations of carbohydrate scaffolds are discussed in light of the biological implications arising from such substitutions.
Collapse
Affiliation(s)
- María Laura Uhrig
- Universidad de Buenos Aires
- Facultad de Ciencias Exactas y Naturales
- Departamento de Química Orgánica
- C1428EG Buenos Aires
- Argentina
| | - Beatriz Lantaño
- Departmento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- Junin 954 CP1113-Buenos Aires
- Argentina
| | - Al Postigo
- Departmento de Química Orgánica
- Facultad de Farmacia y Bioquímica
- Universidad de Buenos Aires
- Junin 954 CP1113-Buenos Aires
- Argentina
| |
Collapse
|
11
|
Zhu F, Rodriguez J, O’Neill S, Walczak MA. Acyl Glycosides through Stereospecific Glycosyl Cross-Coupling: Rapid Access to C(sp 3)-Linked Glycomimetics. ACS CENTRAL SCIENCE 2018; 4:1652-1662. [PMID: 30648149 PMCID: PMC6311691 DOI: 10.1021/acscentsci.8b00628] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Indexed: 05/04/2023]
Abstract
Replacement of a glycosidic bond with hydrolytically stable C-C surrogates is an efficient strategy to access glycomimetics with improved physicochemical and pharmacological properties. We describe here a stereoretentive cross-coupling reaction of glycosyl stannanes with C(sp2)- and C(sp3)-thio(seleno)esters suitable for the preparation C-acyl glycosides as synthetic building blocks to obtain C(sp3)-linked and fluorinated glycomimetics. First, we identified a set of standardized conditions employing a Pd(0) precatalyst, CuCl additive, and phosphite ligand that provided access to C-acyl glycosides without deterioration of anomeric integrity and decarbonylation of the acyl donors (>40 examples). Second, we demonstrated that C(sp3)-glycomimetics could be introduced into the anomeric position via a direct conversion of C1 ketones. Specifically, the conversion of the carbonyl group into a CF2 mimetic is an appealing method to access valuable fluorinated analogues. We also illustrate that the introduction of other carbonyl-based groups into the C1 position of mono- and oligosaccharides can be accomplished using the corresponding acyl donors. This protocol is amenable to late-stage glycodiversification and programmed mutation of the C-O bond into hydrolytically stable C-C bonds. Taken together, stereoretentive anomeric acylation represents a convenient method to prepare a diverse set of glycan mimetics with minimal synthetic manipulations and with absolute control of anomeric configuration.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Jacob Rodriguez
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Sloane O’Neill
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Maciej A. Walczak
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Václavík J, Klimánková I, Budinská A, Beier P. Advances in the Synthesis and Application of Tetrafluoroethylene- and 1,1,2,2-Tetrafluoroethyl-Containing Compounds. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701590] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jiří Václavík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Iveta Klimánková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Alena Budinská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| | - Petr Beier
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Flemingovo nám. 2 166 10 Prague Czech Republic
| |
Collapse
|
13
|
An asymmetric tertiary carbon center with a tetrafluoroethylene (–CF 2 CF 2 –) fragment: Novel construction method and application in a chiral liquid crystalline molecule. J Fluor Chem 2018. [DOI: 10.1016/j.jfluchem.2017.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|