1
|
Simon P, Lőrinczi B, Szatmári I. Alkoxyalkylation of Electron-Rich Aromatic Compounds. Int J Mol Sci 2024; 25:6966. [PMID: 39000077 PMCID: PMC11241777 DOI: 10.3390/ijms25136966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Alkoxyalkylation and hydroxyalkylation methods utilizing oxo-compound derivatives such as aldehydes, acetals or acetylenes and various alcohols or water are widely used tools in preparative organic chemistry to synthesize bioactive compounds, biosensors, supramolecular compounds and petrochemicals. The syntheses of such molecules of broad relevance are facilitated by acid, base or heterogenous catalysis. However, degradation of the N-analogous Mannich bases are reported to yield alkoxyalkyl derivatives via the retro-Mannich reaction. The mutual derivative of all mentioned species are quinone methides, which are reported to form under both alkoxy- and aminoalkylative conditions and via the degradation of the Mannich-products. The aim of this review is to summarize the alkoxyalkylation (most commonly alkoxymethylation) of electron-rich arenes sorted by the methods of alkoxyalkylation (direct or via retro-Mannich reaction) and the substrate arenes, such as phenolic and derived carbocycles, heterocycles and the widely examined indole derivatives.
Collapse
Affiliation(s)
- Péter Simon
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Bálint Lőrinczi
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - István Szatmári
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
- HUN REN SZTE Stereochemistry Research Group, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| |
Collapse
|
2
|
Lena A, Benassi A, Stasi M, Saint‐Pierre C, Freccero M, Gasparutto D, Bombard S, Doria F, Verga D. Photoactivatable V-Shaped Bifunctional Quinone Methide Precursors as a New Class of Selective G-quadruplex Alkylating Agents. Chemistry 2022; 28:e202200734. [PMID: 35441438 PMCID: PMC9322314 DOI: 10.1002/chem.202200734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.
Collapse
Affiliation(s)
- Alberto Lena
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Alessandra Benassi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Michele Stasi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
- Present Address: Department of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | | | - Mauro Freccero
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Didier Gasparutto
- University Grenoble AlpesCEACNRSIRIGSyMMES-UMR581938054GrenobleFrance
| | - Sophie Bombard
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Daniela Verga
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| |
Collapse
|
3
|
Yu D, Fan H, Sun J, Xue L, Wang L, Jia Y, Tian J, Sun H. Phenyl Selenide-Based Precursors as Hydrogen Peroxide Inducible DNA Interstrand Cross-Linkers. Chembiochem 2022; 23:e202200086. [PMID: 35224848 DOI: 10.1002/cbic.202200086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/26/2022] [Indexed: 11/10/2022]
Abstract
DNA interstrand crosslinks (ICLs) are highly toxic DNA lesions, and induce cell death by blocking DNA strands separation. Most developed ICL agents, aiming to kill cancer cells, also generate adverse side effects to normal cells. H2O2-inducible DNA ICL agents are highly selective to target cancer cells, as the concentration of H2O2 is higher in cancer cells than normal cells. Previous studies focus on arylboronate-based precursors, reacting with H2O2 to generate reactive quinone methides (QMs) crosslinking DNA. Here we explore phenyl selenide-based precursors 1-3 as H2O2-inducible DNA ICL agents. The precursors 1-3 can be activated by H2O2 to generate the good benzylic leaving group and promote production of reactive QMs to crosslink DNA. Moreover, the DNA cross-linking ability is enhanced by the introduction of substituents in the para position of the phenolic hydroxyl group. From the substituents explored (H, OMe, F), the introduction of electron donating group (OMe) shows a pronounced elevating effect. Further mechanistic studies at the molecular and DNA levels confirm alkylation sites located mainly at dAs, dCs and dGs in DNA. Additionally, cellular experiments reveal that agents 1-3 exhibit higher cytotoxicity toward H1299 human lung cancer cells compared to clinically used drugs, by inducing cellular DNA damage, apoptosis and G0/G1 cell cycle arrest. This study provides a strategy to develop H2O2-inducible DNA interstrand cross-linkers.
Collapse
Affiliation(s)
- Dehao Yu
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Heli Fan
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Jing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Li Xue
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Luo Wang
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Yuanyuan Jia
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Junyu Tian
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, Heping District, 300070, Tianjin, CHINA
| | - Huabing Sun
- Tianjin Medical University, Pharmacy, 22 Qixiangtai Road, 300070, Tianjin, CHINA
| |
Collapse
|
4
|
Cink RB, Zhou Y, Du L, Rahman MS, Phillips DL, Simpson MC, Seed AJ, Sampson P, Brasch NE. Mechanistic Insights into Rapid Generation of Nitroxyl from a Photocaged N-Hydroxysulfonamide Incorporating the (6-Hydroxynaphthalen-2-yl)methyl Chromophore. J Org Chem 2021; 86:8056-8068. [PMID: 34107217 DOI: 10.1021/acs.joc.1c00457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
HNO is a highly reactive molecule that shows promise in treating heart failure. Molecules that rapidly release HNO with precise spatial and temporal control are needed to investigate the biology of this signaling molecule. (Hydroxynaphthalen-2-yl)methyl-photocaged N-hydroxysulfonamides are a new class of photoactive HNO generators. Recently, it was shown that a (6-hydroxynaphthalen-2-yl)methyl (6,2-HNM)-photocaged derivative of N-hydroxysulfonamide incorporating the trifluoromethanesulfonamidoxy group (1) quantitatively generates HNO. Mechanistic studies have now been carried out on this system and reveal that the ground state protonation state plays a key role in whether concerted heterolytic C-O/N-S bond cleavage to release HNO occurs versus undesired O-N bond cleavage. N-Deprotonation of 1 can be achieved by adding an aqueous buffer or a carboxylate salt to an aprotic solvent. Evidence is presented for C-O/N-S bond heterolysis occurring directly from the singlet excited state of the N-deprotonated parent molecule on the picosecond time scale, using femtosecond time-resolved transient absorption spectroscopy, to give a carbocation and 1NO-. This is consistent with the observation of significant fluorescence quenching when HNO is generated. The carbocation intermediate reacts rapidly with nucleophiles including water, MeOH, or even (H)NO in the absence of a molecule that reacts rapidly with (H)NO to give an oxime.
Collapse
Affiliation(s)
- Ruth B Cink
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Yang Zhou
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Lili Du
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - Mohammad S Rahman
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 99077, P. R. China
| | - M Cather Simpson
- The Photon Factory, School of Chemical Sciences and Department of Physics, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.,The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6012, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand
| | - Alexander J Seed
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Paul Sampson
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Nicola E Brasch
- School of Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand.,The Dodd-Walls Centre for Quantum and Photonic Technologies, Dunedin 9054, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
5
|
Liu J, Cheng R, Van Eps N, Wang N, Morizumi T, Ou WL, Klauser PC, Rozovsky S, Ernst OP, Wang L. Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents. J Am Chem Soc 2020; 142:17057-17068. [PMID: 32915556 DOI: 10.1021/jacs.0c06820] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific modification of proteins with functional molecules provides powerful tools for researching and engineering proteins. Here we report a new chemical conjugation method which photocages highly reactive but chemically selective moieties, enabling the use of protein-inert amines for selective protein modification. New amino acids FnbY and FmnbY, bearing photocaged quinone methides (QMs), were genetically incorporated into proteins. Upon light activation, they generated highly reactive QM, which rapidly reacted with amine derivatives. This method features a rare combination of desired properties including fast kinetics, small and stable linkage, compatibility with low temperature, photocontrollability, and widely available reagents. Moreover, labeling via FnbY occurs on the β-carbon, affording the shortest linkage to protein backbone which is essential for advanced studies involving orientation and distance. We installed various functionalities onto proteins and attached a spin label as close as possible to the protein backbone, achieving high resolution in double electron-electron paramagnetic resonance distance measurements.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| |
Collapse
|
6
|
Boase NRB. Shining a Light on Bioorthogonal Photochemistry for Polymer Science. Macromol Rapid Commun 2020; 41:e2000305. [DOI: 10.1002/marc.202000305] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/29/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Nathan R. B. Boase
- Centre for Materials Science Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
- School of Chemistry and Physics Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia
| |
Collapse
|
7
|
Hutchinson MA, Deeyaa BD, Byrne SR, Williams SJ, Rokita SE. Directing Quinone Methide-Dependent Alkylation and Cross-Linking of Nucleic Acids with Quaternary Amines. Bioconjug Chem 2020; 31:1486-1496. [PMID: 32298588 PMCID: PMC7242154 DOI: 10.1021/acs.bioconjchem.0c00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyamine and polyammonium ion conjugates are often used to direct reagents to nucleic acids based on their strong electrostatic attraction to the phosphoribose backbone. Such nonspecific interactions do not typically alter the specificity of the attached reagent, but polyammonium ions dramatically redirected the specificity of a series of quinone methide precursors. Replacement of a relatively nonspecific intercalator based on acridine with a series of polyammonium ions resulted in a surprising change of DNA products. Piperidine stable adducts were generated in duplex DNA that lacked the ability to support a dynamic cross-linking observed previously with acridine conjugates. Minor reaction at guanine N7, the site of reversible reaction, was retained by a monofunctional quinone methide-polyammonium ion conjugate, but a bisfunctional analogue designed for tandem quinone methide formation modified guanine N7 in only single-stranded DNA. The resulting intrastrand cross-links were sufficiently dynamic to rearrange to interstrand cross-links. However, no further transfer of adducts was observed in duplex DNA. An alternative design that spatially and temporally decoupled the two quinone methide equivalents neither restored the dynamic reaction nor cross-linked DNA efficiently. While di- and triammonium ion conjugates successfully enhanced the yields of cross-linking by a bisquinone methide relative to a monoammonium equivalent, alternative ligands will be necessary to facilitate the migration of cross-linking and its potential application to disrupt DNA repair.
Collapse
Affiliation(s)
- Mark A. Hutchinson
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Blessing D. Deeyaa
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Shane R. Byrne
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Sierra J. Williams
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| | - Steven E. Rokita
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
- Chemistry-Biology Interface Program, Johns Hopkins University, 3400 N. Charles St, Baltimore, MD 21218 USA
| |
Collapse
|
8
|
Deeyaa BD, Rokita SE. Migratory ability of quinone methide-generating acridine conjugates in DNA. Org Biomol Chem 2020; 18:1671-1678. [DOI: 10.1039/d0ob00081g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conversion of a bisquinone methide–acridine conjugate to its monofunctional analogue releases the constraints that limit migration of its reversible adducts within DNA.
Collapse
|
9
|
Synthesis and photocytotoxic activity of [1,2,3]triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines. Eur J Med Chem 2018; 162:176-193. [PMID: 30445266 DOI: 10.1016/j.ejmech.2018.10.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/02/2018] [Accepted: 10/31/2018] [Indexed: 12/31/2022]
Abstract
[1,2,3]Triazolo[4,5-h][1,6]naphthyridines and [1,3]oxazolo[5,4-h][1,6]naphthyridines were synthesized with the aim to investigate their photocytotoxic activity. Upon irradiation, oxazolo-naphtapyridines induced light-dependent cell death at nanomolar/low micromolar concentrations (EC50 0.01-6.59 μM). The most photocytotoxic derivative showed very high selectivity and photocytotoxicity indexes (SI = 72-86, PTI>5000), along with a triplet excited state with exceptionally long lifetime (18.0 μs) and high molar absorptivity (29781 ± 180 M-1cm-1 at λmax 315 nm). The light-induced production of ROS promptly induced an unquenchable apoptotic process selectively in tumor cells, with mitochondrial and lysosomal involvement. Altogether, these results demonstrate that the most active compound acts as a promising singlet oxygen sensitizer for biological applications.
Collapse
|
10
|
Yan Z, Du L, Lan X, Zhang X, Phillips DL. Time-resolved spectroscopic and density functional theory investigation of the influence of the leaving group on the generation of a binol quinone methide. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Pérez-Ruiz R, Molins-Molina O, Lence E, González-Bello C, Miranda MA, Jiménez MC. Photogeneration of Quinone Methides as Latent Electrophiles for Lysine Targeting. J Org Chem 2018; 83:13019-13029. [PMID: 30274513 DOI: 10.1021/acs.joc.8b01559] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Latent electrophiles are nowadays very attractive chemical entities for drug discovery, as they are unreactive unless activated upon binding with the specific target. In this work, the utility of 4-trifluoromethyl phenols as precursors of latent electrophiles, quinone methides (QM), for lysine-targeting is demonstrated. These Michael acceptors were photogenerated for specific covalent modification of lysine residues using human serum albumin (HSA) as a model target. The reactive QM-type intermediates I or II, generated upon irradiation of 4-trifluoromethyl-1-naphthol (1)@HSA or 4-(4-trifluorometylphenyl)phenol (2)@HSA complexes, exhibited chemoselective reactivity toward lysine residues leading to amide adducts, which was confirmed by proteomic analysis. For ligand 1, the covalent modification of residues Lys106 and Lys414 (located in subdomains IA and IIIA, respectively) was observed, whereas for ligand 2, the modification of Lys195 (in subdomain IIA) took place. Docking and molecular dynamics simulation studies provided an insight into the molecular basis of the selectivity of 1 and 2 for these HSA subdomains and the covalent modification mechanism. These studies open the opportunity of performing protein silencing by generating reactive ligands under very mild conditions (irradiation) for specific covalent modification of hidden lysine residues.
Collapse
Affiliation(s)
- Raúl Pérez-Ruiz
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC , Universitat Politécnica de València , Camino de Vera s/n , 46071 Valencia , Spain.,Photoactivated Processes Unit , IMDEA Energy Institute , Av. Ramón de la Sagra 3 , 28935 Móstoles, Madrid , Spain
| | - Oscar Molins-Molina
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC , Universitat Politécnica de València , Camino de Vera s/n , 46071 Valencia , Spain
| | - Emilio Lence
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Concepción González-Bello
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Departamento de Química Orgánica , Universidade de Santiago de Compostela , Jenaro de la Fuente s/n , 15782 Santiago de Compostela , Spain
| | - Miguel A Miranda
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC , Universitat Politécnica de València , Camino de Vera s/n , 46071 Valencia , Spain
| | - M Consuelo Jiménez
- Departamento de Química, Instituto de Tecnología Química UPV-CSIC , Universitat Politécnica de València , Camino de Vera s/n , 46071 Valencia , Spain
| |
Collapse
|
12
|
Škalamera Đ, Antol I, Mlinarić-Majerski K, Vančik H, Phillips DL, Ma J, Basarić N. Ultrafast Adiabatic Photodehydration of 2-Hydroxymethylphenol and the Formation of Quinone Methide. Chemistry 2018; 24:9426-9435. [PMID: 29677402 DOI: 10.1002/chem.201801543] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Indexed: 12/13/2022]
Abstract
The photochemical reactivity of 2-hydroxymethylphenol (1) was investigated experimentally by photochemistry under cryogenic conditions, by detecting reactive intermediates by IR spectroscopy, and by using nanosecond and femtosecond transient absorption spectroscopic methods in solution at room temperature. In addition, theoretical studies were performed to facilitate the interpretation of the experimental results and also to simulate the reaction pathway to obtain a better understanding of the reaction mechanism. The main finding of this work is that photodehydration of 1 takes place in an ultrafast adiabatic photochemical reaction without any clear intermediate, delivering quinone methide (QM) in the excited state. Upon photoexcitation to a higher vibrational level of the singlet excited state, 1 undergoes vibrational relaxation leading to two photochemical pathways, one by which synchronous elimination of H2 O gives QM 2 in its S1 state and the other by which homolytic cleavage of the phenolic O-H bond produces a phenoxyl radical (S0 ). Both are ultrafast processes that occur within a picosecond. The excited state of QM 2 (S1 ) probably deactivates to S0 through a conical intersection to give QM 2 (S0 ), which subsequently delivers benzoxete 4. Elucidation of the reaction mechanisms for the photodehydration of phenols by which QMs are formed is important to tune the reactivity of QMs with DNA and proteins for the potential application of QMs in medicine as therapeutic agents.
Collapse
Affiliation(s)
- Đani Škalamera
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia.,Department of Organic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Ivana Antol
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| | - Hrvoj Vančik
- Department of Organic Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong S.A.R., P.R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of, Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, P.R. China
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10000, Zagreb, Croatia
| |
Collapse
|
13
|
Husak A, Noichl BP, Šumanovac Ramljak T, Sohora M, Škalamera Đ, Budiša N, Basarić N. Photochemical formation of quinone methides from peptides containing modified tyrosine. Org Biomol Chem 2018; 14:10894-10905. [PMID: 27812591 DOI: 10.1039/c6ob02191c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have demonstrated that quinone methide (QM) precursors can be introduced in the peptide structure and used as photoswitchable units for peptide modifications. QM precursor 1 was prepared from protected tyrosine in the Mannich reaction, and further used as a building block in peptide synthesis. Moreover, peptides containing tyrosine can be transformed into a photoactivable QM precursor by the Mannich reaction which can afford monosubstituted derivatives 2 or bis-substituted derivatives 3. Photochemical reactivity of modified tyrosine 1 and dipeptides 2 and 3 was studied by preparative irradiation in CH3OH where photodeamination and photomethanolysis occur. QM precursors incorporated in peptides undergo photomethanolysis with quantum efficiency ΦR = 0.1-0.2, wherein the peptide backbone does not affect their photochemical reactivity. QMs formed from dipeptides were detected by laser flash photolysis (λmax ≈ 400 nm, τ = 100 μs-20 ms) and their reactivity with nucleophiles was studied. Consequently, QM precursors derived from tyrosine can be a part of the peptide backbone which can be transformed into QMs upon electronic excitation, leading to the reactions of peptides with different reagents. This proof of principle showing the ability to photochemically trigger peptide modifications and interactions with other molecules can have numerous applications in organic synthesis, materials science, biology and medicine.
Collapse
Affiliation(s)
- Antonija Husak
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Benjamin P Noichl
- Institute for Chemistry, Technical University Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Tatjana Šumanovac Ramljak
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Margareta Sohora
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Đani Škalamera
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Nediljko Budiša
- Institute for Chemistry, Technical University Berlin, Müller-Breslau-Str. 10, 10623 Berlin, Germany
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
14
|
Yang Y, Ma Y, Zhao Y, Zhao Y, Li Y. Theoretical Investigation of the Reaction Mechanism of Photodeamination Induced by Excited-State Intramolecular Proton Transfer of Cresol Derivatives. J Phys Chem A 2018; 122:1011-1018. [DOI: 10.1021/acs.jpca.7b11571] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yunfan Yang
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China
- State Key Laboratory of Molecular Reaction
Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yanzhen Ma
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yu Zhao
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, P. R. China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, P. R. China
- State Key Laboratory of Molecular Reaction
Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
15
|
Ma J, Zhang X, Basarić N, Phillips DL. Direct Observation of Photoinduced Ultrafast Generation of Singlet and Triplet Quinone Methides in Aqueous Solutions and Insight into the Roles of Acidic and Basic Sites in Quinone Methide Formation. J Am Chem Soc 2017; 139:18349-18357. [PMID: 29182856 DOI: 10.1021/jacs.7b10387] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Femtosecond time-resolved transient absorption spectroscopy experiments and density functional theory computations were done for a mechanistic investigation of 3-(1-phenylvinyl)phenol (1) and 3-hydroxybenzophenone (2) in selected solvents. Both compounds went through an intersystem crossing (ISC) to form the triplet excited states Tππ* and Tnπ* in acetonitrile but behave differently in neutral aqueous solutions, in which a triplet excited state proton transfer (ESPT) induced by the ISC process is also proposed for 2 but a singlet ESPT without ISC is proposed for 1, leading to the production of the triplet quinone methide (QM) and the singlet excited QM species respectively in these two systems. The triplet QM then underwent an ISC process to form an unstable ground state intermediate which soon returned to its starting material 2. However, the singlet excited state QM went through an internal conversion process to the ground state QM followed by the formation of its final product in an irreversible manner. These differences are thought to be derived from the slow vinyl C-C rotation and the moderate basicity of the vinyl C atom in 1 as compared with the fast C-O rotation and the greater basicity of the carbonyl O atom of 2 after photoexcitation. This can account for the experimental results in the literature that the aromatic vinyl compounds undergo efficient singlet excited state photochemical reactions while the aromatic carbonyl compounds prefer triplet photochemical reactions under aqueous conditions. These results have fundamental and significant implications for understanding of the ESPT reactivity in general, as well as for the design of molecules for efficient QM formation in aqueous media with potential applications in cancer phototherapy.
Collapse
Affiliation(s)
- Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University , Xi'an, P. R. China
| | - Xiting Zhang
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, P. R. China
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute , Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong , Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
16
|
Škalamera Đ, Mlinarić-Majerski K, Martin Kleiner I, Kralj M, Oake J, Wan P, Bohne C, Basarić N. Photochemical Formation of Anthracene Quinone Methide Derivatives. J Org Chem 2017; 82:6006-6021. [PMID: 28534631 DOI: 10.1021/acs.joc.6b02735] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anthrols 2-7 were synthesized and their photochemical reactivity investigated by irradiations in aq CH3OH. Upon excitation with visible light (λ > 400 nm) in methanolic solutions, they undergo photodehydration or photodeamination and deliver methyl ethers, most probably via quinone methides (QMs), with methanolysis quantum efficiencies ΦR = 0.02-0.3. Photophysical properties of 2-7 were determined by steady-state fluorescence and time-correlated single photon counting. Generally, anthrols 2-7 are highly fluorescent in aprotic solvents (ΦF = 0.5-0.9), whereas in aqueous solutions the fluorescence is quenched due to excited-state proton transfer (ESPT) to solvent. The exception is amine 4 that undergoes excited-state intramolecular proton transfer (ESIPT) in neat CH3CN where photodeamination is probably coupled to ESIPT. Photodehydration may take place via ESIPT (or ESPT) that is coupled to dehydration or via a hitherto undisclosed pathway that involves photoionization and deprotonation of radical cation, followed by homolytic cleavage of the alcohol OH group from the phenoxyl radical. QMs were detected by laser flash photolysis and their reactivity with nucleophiles investigated. Biological investigation of 2-5 on human cancer cell lines showed enhancement of antiproliferative effect upon exposure of cells to irradiation by visible light, probably due to formation of electrophilic species such as QMs.
Collapse
Affiliation(s)
| | | | | | | | - Jessy Oake
- Department of Chemistry, University of Victoria , Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada
| | - Peter Wan
- Department of Chemistry, University of Victoria , Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada
| | - Cornelia Bohne
- Department of Chemistry, University of Victoria , Box 1700 STN CSC, Victoria BC V8W 2Y2, Canada
| | | |
Collapse
|
17
|
Uzelac L, Škalamera Đ, Mlinarić-Majerski K, Basarić N, Kralj M. Selective photocytotoxicity of anthrols on cancer stem-like cells: The effect of quinone methides or reactive oxygen species. Eur J Med Chem 2017. [PMID: 28633106 DOI: 10.1016/j.ejmech.2017.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells that share properties of embryonic stem cells like pluripotency and self-renewal and show increased resistance to chemo- and radiotherapy. Targeting CSC, rather than cancer cells in general, is a novel and promising strategy for cancer treatment. Novel therapeutic approaches, such as photodynamic therapy (PDT) have been investigated. A promising group of phototherapeutic agents are reactive intermediates - quinone methides (QMs). This study describes preparation of QM precursor, 2-hydroxy-3-hydroxymethylanthracene (2) and a detailed photochemical and photobiological investigation on similar anthracene derivatives 3 and 4. Upon photoexcitation with near visible light at λ > 400 nm 1 and 2 give QMs, that were detected by laser flash photolysis and their reactivity with nucleophiles has been demonstrated in the preparative irradiation experiments where the corresponding adducts were isolated and characterized. 3 and 4 cannot undergo photodehydration and deliver QM, but lead to the formation of phenoxyl radical and singlet oxygen, respectively. The activity of 1-4 was tested on a panel of human tumor cell lines, while special attention was devoted to demonstrate their potential selectivity towards the cells with CSC-like properties (HMLEshEcad). Upon the irradiation of cell lines treated with 1-4, an enhancement of antiproliferative activity was demonstrated, but the DNA was not the target molecule. Confocal microscopy revealed that these compounds entered the cell and, upon irradiation, reacted with cellular membranes. Our experiments demonstrated moderate selectivity of 2 and 4 towards CSC-like cells, while necrosis was shown to be a dominant cell death mechanism. Especially interesting was the selectivity of 4 that produced higher levels of ROS in CSC-like cells, which forms the basis for further research on cancer phototherapy, as well as for the elucidation of the underlying mechanism of the observed CSC selectivity based on oxidative stress activation.
Collapse
Affiliation(s)
- Lidija Uzelac
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Đani Škalamera
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Kata Mlinarić-Majerski
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Nikola Basarić
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia.
| |
Collapse
|
18
|
Hydrogen peroxide activated quinone methide precursors with enhanced DNA cross-linking capability and cytotoxicity towards cancer cells. Eur J Med Chem 2017; 133:197-207. [PMID: 28388522 DOI: 10.1016/j.ejmech.2017.03.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/24/2017] [Accepted: 03/22/2017] [Indexed: 11/21/2022]
Abstract
Quinone methide (QM) formation induced by endogenously generated H2O2 is attractive for biological and biomedical applications. To overcome current limitations due to low biological activity of H2O2-activated QM precursors, we are introducing herein several new arylboronates with electron donating substituents at different positions of benzene ring and/or different neutral leaving groups. The reaction rate of the arylboronate esters with H2O2 and subsequent bisquinone methides formation and DNA cross-linking was accelerated with the application of Br as a leaving group instead of acetoxy groups. Additionally, a donating group placed meta to the nascent exo-methylene group of the quinone methide greatly improves H2O2-induced DNA interstrand cross-link formation as well as enhances the cellular activity. Multiple donating groups decrease the stability and DNA cross-linking capability, which lead to low cellular activity. A cell-based screen demonstrated that compounds 2a and 5a with a OMe or OH group dramatically inhibited the growth of various tissue-derived cancer cells while normal cells were less affected. Induction of H2AX phosphorylation by these compounds in CLL lymphocytes provide evidence for a correlation between cell death and DNA damage. The compounds presented herein showed potent anticancer activities and selectivity, which represent a novel scaffold for anticancer drug development.
Collapse
|
19
|
Spanò V, Giallombardo D, Cilibrasi V, Parrino B, Carbone A, Montalbano A, Frasson I, Salvador A, Richter SN, Doria F, Freccero M, Cascioferro S, Diana P, Cirrincione G, Barraja P. Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines with potent photo-antiproliferative activity. Eur J Med Chem 2017; 128:300-318. [PMID: 28213283 DOI: 10.1016/j.ejmech.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/19/2017] [Accepted: 02/04/2017] [Indexed: 12/19/2022]
Abstract
Pyrrolo[3',2':6,7]cyclohepta[1,2-b]pyridines were synthesized as a new class of tricyclic system in which the pyridine ring is annelated to a cycloheptapyrrole scaffold, with the aim of obtaining new photosensitizing agents with improved antiproliferative activity and lower undesired toxic effects. A versatile synthetic pathway was approached, which allowed the isolation of derivatives of the title ring system with a good substitution pattern on the pyrrole moiety. Photobiological studies revealed that the majority of the new compounds showed a potent cytotoxic effect upon photoactivation with light of the proper wavelength, especially when decorated with a 2-ethoxycabonyl group and a N-benzyl substituted moiety, with EC50 values reaching the submicromolar level. The mechanism of action was evaluated.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Vincenzo Cilibrasi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Alessia Salvador
- Dipartimento di Scienze Farmeceutiche, Università degli Studi di Padova, Via Marzolo 5, 35131 Padova, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
20
|
Du L, Zhang X, Xue J, Tang W, Li MD, Lan X, Zhu J, Zhu R, Weng Y, Li YL, Phillips DL. Influence of Water in the Photogeneration and Properties of a Bifunctional Quinone Methide. J Phys Chem B 2016; 120:11132-11141. [PMID: 27723330 DOI: 10.1021/acs.jpcb.6b08705] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Quinone methides (QM) are crucial reactive species in molecular biology and organic chemistry, with little known regarding the mechanism(s) for the generation of short-lived reactive QM intermediates from relevant precursors in aqueous solutions. In this study, several time-resolved spectroscopy methods were used to directly examine the photophysics and photochemical pathways of 1,1'-(2,2'-dihydroxy-1,1'-binaphthyl-6,6'-diyl)bis(N,N,N-trimethylmethanaminium) bromide (BQMP-b) from initial photoexcitation to the generation of the key reactive binol QM intermediate (BQM) in aqueous solution. The fluorescence of BQMP-b is effectively quenched with a small amount of water, which suggests an excited state intramolecular proton transfer (ESIPT) occurs. The kinetics isotope effects observed in femtosecond and nanosecond time-resolved transient absorption experiments provide evidence for the participation of water molecules in the BQMP-b singlet excited state ESIPT process and in the subsequent -HNMe3+ group release and ground state intramolecular proton transfer that give rise to production of the reactive BQM intermediate. Nanosecond time-resolved resonance Raman (ns-TR3) measurements were also employed to investigate the structure and properties of several intermediates, including the key reactive BQM in aqueous solution. The ns-TR3 and density functional theory (DFT) computational results were compared, and this indicates the binol moiety and water molecules both have important roles in the characteristics and structure of the key reactive BQM intermediate produced from BQMP-b. The results presented here also provide new benchmark characterization of bifunctional quinone methide intermediates that can be utilized to guide direct time-resolved spectroscopic study of the alkylation and interstrand cross-linking reactions of quinone methides with DNA in the future.
Collapse
Affiliation(s)
- Lili Du
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Xiting Zhang
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University , Hangzhou 310018, P. R. China
| | - WenJian Tang
- School of Pharmacy, Anhui Medical University , Meishan Road 81, Hefei 230032, P.R. China
| | - Ming-De Li
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Xin Lan
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Jiangrui Zhu
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Ruixue Zhu
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| | - Yuxiang Weng
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Yun-Liang Li
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - David Lee Phillips
- Department of Chemistry, University of Hong Kong , Pokfulam Road, Hong Kong S.A.R., P. R. China
| |
Collapse
|
21
|
Spanò V, Frasson I, Giallombardo D, Doria F, Parrino B, Carbone A, Montalbano A, Nadai M, Diana P, Cirrincione G, Freccero M, Richter SN, Barraja P. Synthesis and antiproliferative mechanism of action of pyrrolo[3',2':6,7] cyclohepta[1,2-d]pyrimidin-2-amines as singlet oxygen photosensitizers. Eur J Med Chem 2016; 123:447-461. [PMID: 27490024 DOI: 10.1016/j.ejmech.2016.07.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/01/2023]
Abstract
A new series of pyrrolo[3',2':6,7]cyclohepta[1,2-d]pyrimidin-2-amines, was conveniently prepared using a versatile and high yielding multistep sequence. A good number of derivatives was obtained and the cellular photocytotoxicity was evaluated in vitro against three different human tumor cell lines with EC50 (0.08-4.96 μM) values reaching the nanomolar level. Selected compounds were investigated by laser flash photolysis. The most photocytotoxic derivative, exhibiting a fairly long-lived triplet state (τ ∼ 7 μs) and absorbance in the UV-Vis, was tested in the photo-oxidations of 9,10-anthracenedipropionic acid (ADPA) by singlet oxygen. The photosentizing properties are responsible for the compounds' ability to photoinduce massive cell death with involvement of mitochondria.
Collapse
Affiliation(s)
- Virginia Spanò
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Ilaria Frasson
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Daniele Giallombardo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Filippo Doria
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Anna Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Alessandra Montalbano
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Matteo Nadai
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy
| | - Mauro Freccero
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 10, 27100 Pavia, Italy
| | - Sara N Richter
- Dipartimento di Medicina Molecolare, Università degli Studi di Padova, Via Gabelli 63, 35121 Padova, Italy
| | - Paola Barraja
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy.
| |
Collapse
|
22
|
Huang C, Liu Y, Rokita SE. Targeting duplex DNA with the reversible reactivity of quinone methides. Signal Transduct Target Ther 2016; 1. [PMID: 28458944 PMCID: PMC5407369 DOI: 10.1038/sigtrans.2016.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
DNA alkylation and crosslinking remains a common and effective strategy for anticancer chemotherapy despite its infamous lack of specificity. Coupling a reactive group to a sequence-directing component has the potential to enhance target selectivity but may suffer from premature degradation or the need for an external signal for activation. Alternatively, quinone methide conjugates may be employed if they form covalent but reversible adducts with their sequence directing component. The resulting self-adducts transfer their quinone methide to a chosen target without an external signal and avoid off-target reactions by alternative intramolecular self-trapping. Efficient transfer is shown to depend on the nature of the quinone methide and the sequence-directing ligand in applications involving alkylation of duplex DNA through a triplex recognition motif. Success required an electron-rich derivative that enhanced the stability of the transient quinone methide intermediate and a polypyrimidine strand of DNA to associate with its cognate polypurine/polypyrimidine target. Related quinone methide conjugates with peptide nucleic acids were capable of quinone methide transfer from their initial precursor but not from their corresponding self-adduct. The active peptide nucleic acid derivatives were highly selective for their complementary target.
Collapse
Affiliation(s)
- Chengyun Huang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Yang Liu
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| | - Steven E Rokita
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, USA
| |
Collapse
|